您将如何将 shap 或 Lime 或任何其他模型可解释性工具与 TPOT 导出管道一起使用?例如,这里有一些 shap 库的代码,但您不能将 TPOT 管道传递给它。你会在那里传递什么?
explainer = shap.Explainer(model)
shap_values = explainer(X)
您将如何将 shap 或 Lime 或任何其他模型可解释性工具与 TPOT 导出管道一起使用?例如,这里有一些 shap 库的代码,但您不能将 TPOT 管道传递给它。你会在那里传递什么?
explainer = shap.Explainer(model)
shap_values = explainer(X)
解决方案1:
要使用 SHAP 解释 scikit-learn 管道,TPOT 优化过程的结果模型对象,您需要指示 SHAP 使用名为最终估计器(分类器/回归器步骤)的管道,并且您需要使用任何管道转换器步骤转换数据(即:预处理器或特征选择器)在将其提供给 SHAP 解释器之前。
import numpy as np
import pandas as pd
import shap
from sklearn.datasets import load_iris
from tpot import TPOTClassifier
#Let's use the Iris dataset
iris = load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target)
tpot = TPOTClassifier(generations=3, population_size=25, verbosity=3, random_state=42)
tpot.fit(X, y)
#Inspect resulting Pipeline. Great, 2 steps in the Pipeline: one selector and then the classifier.
tpot.fitted_pipeline_
Pipeline(steps=[('variancethreshold', VarianceThreshold(threshold=0.05)),
('logisticregression',
LogisticRegression(C=10.0, random_state=42))])
# Before feeding your data to the explainer, you need to transform the data up to the Pipeline step before the classifier step.
# Beware that in this case it's just one step, but could be more.
shap_df = pd.DataFrame(tpot.fitted_pipeline_.named_steps["variancethreshold"].transform(X), columns=X.columns[tpot.fitted_pipeline_.named_steps["variancethreshold"].get_support(indices=True)])
# Finally, instruct the SHAP explainer to use the classifier step with the transformed data
shap.initjs()
explainer = shap.KernelExplainer(tpot.fitted_pipeline_.named_steps["logisticregression"].predict_proba, shap_df)
shap_values = explainer.shap_values(shap_df)
#Plot summary
shap.summary_plot(shap_values, shap_df)
解决方案2:
显然 scikit-learn Pipelinepredict_proba()
函数将执行解决方案 1 中刚刚描述的操作(即:转换数据,并将 predict_proba 与最终估计器一起应用。)。
从这个意义上说,这也应该对您有用:
import numpy as np
import pandas as pd
import shap
from sklearn.datasets import load_iris
from tpot import TPOTClassifier
iris = load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target)
tpot = TPOTClassifier(generations=10, population_size=50, verbosity=3, random_state=42, template='Selector-Transformer-Classifier')
tpot.fit(X, y)
#Resulting Pipeline
Pipeline(steps=[('variancethreshold', VarianceThreshold(threshold=0.0001)),
('rbfsampler', RBFSampler(gamma=0.8, random_state=42)),
('randomforestclassifier',
RandomForestClassifier(bootstrap=False, criterion='entropy',
max_features=0.5, min_samples_leaf=10,
min_samples_split=12,
random_state=42))])
explainer = shap.KernelExplainer(tpot.fitted_pipeline_.predict_proba, X)
shap_values = explainer.shap_values(X)
shap.summary_plot(shap_values, X)
附加说明
如果您使用基于树的模型,您可以使用TreeExplainer
which is must 比 generic 更快。KernelExplainer
根据文档,支持 LightGBM、CatBoost、Pyspark 和大多数基于树的 scikit-learn 模型。