0

我有一个文本摘要项目。在这个项目中,我确保按顺序汇总数百篇文本。我也得到了这些总结的胭脂分数。但是,我必须先将 Rouge 分数保留在列表中,然后才能生成统计数据。我不知道该怎么做。你能帮助我吗?

from rouge_score import rouge_scorer
scorer = rouge_scorer.RougeScorer(['rouge1'])
scorer.score(hyp,ref)
scores.append(scorer.score(hyp,ref))

样本结果:

[{'rouge1': Score(precision=0.46017699115044247, recall=0.45217391304347826, 
fmeasure=0.45614035087719296)},
{'rouge1': Score(precision=0.1693121693121693, recall=0.2831858407079646, 
fmeasure=0.21192052980132448)}]

自然,我无法直接访问结果。

4

2 回答 2

1

'rouge1'如果您想直接访问 Score 对象,您应该定义字典的键 ( )。
所以scores.append(scorer.score(hyp,ref))将变为scores.append(scorer.score(hyp,ref)['rouge1'])

以下代码是计算每个文档的 ROUGE 度量并在单个字典中分别记住结果的更通用版本:

# importing the native rouge library
from rouge_score import rouge_scorer

# a list of the hypothesis documents
hyp = ['This is the first sample', 'This is another example']
# a list of the references documents
ref = ['This is the first sentence', 'It is one more sentence']

# make a RougeScorer object with rouge_types=['rouge1']
scorer = rouge_scorer.RougeScorer(['rouge1'])

# a dictionary that will contain the results
results = {'precision': [], 'recall': [], 'fmeasure': []}

# for each of the hypothesis and reference documents pair
for (h, r) in zip(hyp, ref):
    # computing the ROUGE
    score = scorer.score(h, r)
    # separating the measurements
    precision, recall, fmeasure = score['rouge1']
    # add them to the proper list in the dictionary
    results['precision'].append(precision)
    results['recall'].append(recall)
    results['fmeasure'].append(fmeasure)

输出将如下所示:

{'fmeasure': [0.8000000000000002, 0.22222222222222224],
 'precision': [0.8, 0.2],
 'recall': [0.8, 0.25]}

此外,我将建议rouge 库,它是ROUGE 论文的另一种实现。结果可能略有不同,但它会引入一些有用的功能,包括通过传入整个文本文档来计算 rouge 度量的可能性,并计算所有文档的平均结果。

于 2021-05-05T09:15:53.957 回答
0

您可以只保留 F1 (fmeasure) 分数作为统计数据。

scores = []
for (hyp, ref) in zip(hyps, refs):
    scores.append(scorer.score(hyp,ref).fmeasure)
于 2021-12-31T08:12:34.350 回答