2

我正在使用 LSTM 解决时间序列预测问题。数据是单变量和非平稳的。我按照以下教程进行操作:

https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/

数据处理如下:首先,取每两个连续时间点之间的差值。然后,通过将下一个时间点作为标签,将数据格式化为监督学习问题。最后,在 1 和 -1 之间进行缩放。然后使用处理后的数据来拟合 LSTM 模型。使用测试数据完成相同的处理步骤以检查 LSTM 预测。执行差值和缩放的逆以播种预测值。一切都很好,我在测试集上得到了很好的结果。但问题是当我想预测下一个样本外的时间点时。假设我有 100 个数据点,70 个点用于训练,30 个用于测试,我想预测点号 101 等等。我试着用

模型.预测(X)

但它不起作用。X 不能简单地是数据集中的最后一个时间点,因为模型应该接收 X 作为已处理(差分和缩放)数据的序列。我不知道我应该怎么做才能让模型预测下一个(样本外)点。任何人都可以帮忙吗?

这是我正在关注的代码:

from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
from matplotlib import pyplot
import numpy

 # date-time parsing function for loading the dataset
def parser(x):
    return datetime.strptime('190'+x, '%Y-%m')

# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
    df = DataFrame(data)
    columns = [df.shift(i) for i in range(1, lag+1)]
    columns.append(df)
    df = concat(columns, axis=1)
    df.fillna(0, inplace=True)
    return df
 
# create a differenced series
def difference(dataset, interval=1):
    diff = list()
    for i in range(interval, len(dataset)):
        value = dataset[i] - dataset[i - interval]
        diff.append(value)
    return Series(diff)
 
# invert differenced value
def inverse_difference(history, yhat, interval=1):
    return yhat + history[-interval]
 
# scale train and test data to [-1, 1]
def scale(train, test):
    # fit scaler
    scaler = MinMaxScaler(feature_range=(-1, 1))
    scaler = scaler.fit(train)
    # transform train
    train = train.reshape(train.shape[0], train.shape[1])
    train_scaled = scaler.transform(train)
    # transform test
    test = test.reshape(test.shape[0], test.shape[1])
    test_scaled = scaler.transform(test)
    return scaler, train_scaled, test_scaled
 
# inverse scaling for a forecasted value
def invert_scale(scaler, X, value):
    new_row = [x for x in X] + [value]
    array = numpy.array(new_row)
    array = array.reshape(1, len(array))
    inverted = scaler.inverse_transform(array)
    return inverted[0, -1]
 
# fit an LSTM network to training data
def fit_lstm(train, batch_size, nb_epoch, neurons):
    X, y = train[:, 0:-1], train[:, -1]
    X = X.reshape(X.shape[0], 1, X.shape[1])
    model = Sequential()
    model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
    model.add(Dense(1))
    model.compile(loss='mean_squared_error', optimizer='adam')
    for i in range(nb_epoch):
        model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
        model.reset_states()
    return model
 
# make a one-step forecast
def forecast_lstm(model, batch_size, X):
    X = X.reshape(1, 1, len(X))
    yhat = model.predict(X, batch_size=batch_size)
    return yhat[0,0]
 
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
 
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
 
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, 1)
supervised_values = supervised.values
 
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
 
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
 
# fit the model
lstm_model = fit_lstm(train_scaled, 1, 3000, 4)
# forecast the entire training dataset to build up state for forecasting
train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)
lstm_model.predict(train_reshaped, batch_size=1)
 
# walk-forward validation on the test data
predictions = list()
for i in range(len(test_scaled)):
    # make one-step forecast
    X, y = test_scaled[i, 0:-1], test_scaled[i, -1]
    yhat = forecast_lstm(lstm_model, 1, X)
    # invert scaling
    yhat = invert_scale(scaler, X, yhat)
    # invert differencing
    yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
    # store forecast
    predictions.append(yhat)
    expected = raw_values[len(train) + i + 1]
    print('Month=%d, Predicted=%f, Expected=%f' % (i+1, yhat, expected))
 
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('Test RMSE: %.3f' % rmse)
# line plot of observed vs predicted
pyplot.plot(raw_values[-12:])
pyplot.plot(predictions)
pyplot.show()
4

0 回答 0