0

GitHub 上的文档有一个关于多线程基准测试的部分,但是,它需要将多线程代码放在基准测试定义中,并且库本身会使用多个线程调用此代码。

我想对一个在内部创建线程的函数进行基准测试。我只对优化多线程部分感兴趣,所以我想单独对该部分进行基准测试。因此,我想在函数的顺序代码运行或内部线程正在创建/销毁并进行设置/拆卸时暂停计时器。

4

1 回答 1

1

使用线程屏障同步原语等到所有线程都已创建或完成设置等。此解决方案使用boost::barrier,但也可以std::barrier从 C++20 开始使用,或实现自定义屏障。如果实施自己很容易搞砸,请小心,但这个答案似乎是正确的。

传递benchmark::State & state给您的函数和线程以在需要时暂停/取消暂停。

#include <thread>
#include <vector>

#include <benchmark/benchmark.h>
#include <boost/thread/barrier.hpp>

void work() {
    volatile int sum = 0;
    for (int i = 0; i < 100'000'000; i++) {
        sum += i;
    }
}

static void thread_routine(boost::barrier& barrier, benchmark::State& state, int thread_id) {
    // do setup here, if needed
    barrier.wait();  // wait until each thread is created
    if (thread_id == 0) {
        state.ResumeTiming();
    }
    barrier.wait();  // wait until the timer is started before doing the work

    // do some work
    work();

    barrier.wait();  // wait until each thread completes the work
    if (thread_id == 0) {
        state.PauseTiming();
    }
    barrier.wait();  // wait until the timer is stopped before destructing the thread
    // do teardown here, if needed
}

void f(benchmark::State& state) {
    const int num_threads = 1000;
    boost::barrier barrier(num_threads);
    std::vector<std::thread> threads;
    threads.reserve(num_threads);
    for (int i = 0; i < num_threads; i++) {
        threads.emplace_back(thread_routine, std::ref(barrier), std::ref(state), i);
    }
    for (std::thread& thread : threads) {
        thread.join();
    }
}

static void BM_AlreadyMultiThreaded(benchmark::State& state) {
    for (auto _ : state) {
        state.PauseTiming();
        f(state);
        state.ResumeTiming();
    }
}

BENCHMARK(BM_AlreadyMultiThreaded)->Iterations(10)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime(); // NOLINT(cert-err58-cpp)
BENCHMARK_MAIN();

在我的机器上,此代码输出(跳过标题):

---------------------------------------------------------------------------------------------
Benchmark                                                   Time             CPU   Iterations
---------------------------------------------------------------------------------------------
BM_AlreadyMultiThreaded/iterations:10/process_time       1604 ms       200309 ms           10

如果我注释掉所有state.PauseTimer()/ state.ResumeTimer(),它会输出:

---------------------------------------------------------------------------------------------
Benchmark                                                   Time             CPU   Iterations
---------------------------------------------------------------------------------------------
BM_AlreadyMultiThreaded/iterations:10/process_time       1680 ms       200102 ms           10

我认为 80 毫秒的实时 / 200 毫秒的 CPU 时间差异在统计上是显着的,而不是噪音,这支持了这个例子正确工作的假设。

于 2021-04-17T17:39:24.493 回答