0

我已经构建、安装并保存了以下模型:

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import preprocessing
from tensorflow.keras.models import Sequential
import config
from tensorflow.keras import applications  

model = Sequential()  
model.add(layers.Flatten(input_shape=input_shape.shape[1:]))  
model.add(layers.Dense(100, activation=keras.layers.LeakyReLU(alpha=0.3)))  
model.add(layers.Dropout(0.5))  
model.add(layers.Dense(50, activation=keras.layers.LeakyReLU(alpha=0.3)))  
model.add(layers.Dropout(0.3)) 
model.add(layers.Dense(num_classes, activation='softmax'))

我正在使用 load_model 函数进行评估,到目前为止我还没有遇到任何问题,但我现在收到以下错误:

ValueError: Unknown activation function: LeakyReLU

我应该对架构进行任何语法更改,还是这里有更深层次的问题?任何建议将不胜感激,因为我已经尝试设置一些自定义对象,如下所述:https ://github.com/BBQuercus/deepBlink/issues/107

编辑:我在调用 load_model 的文件中的导入如下:

import config
import numpy as np
from tensorflow.keras.preprocessing.image import img_to_array, load_img 
from models.create_image_model import make_vgg
import argparse
from tensorflow.keras.models import load_model
import time
from tensorflow import keras
from tensorflow.keras import layers
4

1 回答 1

2

保存和加载具有此类“非标准”激活的模型时似乎存在一些问题,正如此 SO 线程中所暗示的那样;最安全的方法似乎是用 LeakyReLU 作为层而不是激活来重写你的模型:

model = Sequential()  
model.add(layers.Flatten(input_shape=input_shape.shape[1:]))  
model.add(layers.Dense(100)) # no activation here
model.add(layers.LeakyReLU(alpha=0.3)) # activation layer here instead 
model.add(layers.Dropout(0.5))  
model.add(layers.Dense(50)) # no activation here
model.add(layers.LeakyReLU(alpha=0.3))  # activation layer here instead
model.add(layers.Dropout(0.3)) 
model.add(layers.Dense(num_classes, activation='softmax'))

这完全等同于您自己的模型,并且更符合 Keras 的设计选择——无论好坏,它都将 LeakyReLU 作为一个层,而不是作为标准的激活函数。

于 2021-04-19T19:18:37.973 回答