我有一个 32 位浮点 .wav 文件,以 48KHz 的采样率记录了 5 秒。我想获得一个完整的 5 秒的 FFT,应用汉宁窗,没有重叠,FFT 长度为 8192。在获得 FFT 时,我意识到我在 FFT 计算中犯了一个错误。
我使用以下代码来执行此操作:
# Imports
import matplotlib.pyplot as plt
import numpy as np
import math as math
import soundfile as sf
import scipy.fftpack as fftpack
import scipy.io.wavfile as wf
def dbfft(x, fs, win=None, ref=1):
"""
Calculate spectrum in dB scale
Args:
x: input signal
fs: sampling frequency
win: vector containing window samples (same length as x).
If not provided, then rectangular window is used by default.
ref: reference value used for dBFS . 32768 for int16 and 1 for float
Returns:
freq: frequency vector
s_db: spectrum in dB scale
"""
N = len(x) # Length of input sequence
if win is None:
win = np.ones(1, N)
if len(x) != len(win):
raise ValueError('Signal and window must be of the same length')
x = x * win
# Calculate real FFT and frequency vector
sp = np.fft.rfft(x)
freq = np.arange((N / 2) + 1) / (float(N) / fs)
# Scale the magnitude of FFT by window and factor of 2,because we are using half of FFT spectrum.
s_mag = np.abs(sp) * 2 / np.sum(win)
# Convert to dBFS using 20*log10(val/max)
s_dbfs = 20 * np.log10(s_mag/ref)
return freq, s_dbfs
def main():
# Read from wav file
data, samplerate = sf.read('Signal Analyzer_5s_55_1_L1F4_APxRecordedAudio.wav')
# Scaling factor
K = 120
# Calculation
N = 8192
win = np.hanning(N)
# Frequency domain
freq, s_dbfs = dbfft(data[0:N],samplerate, win)
# Scale from dbFS to dB
s_db = s_dbfs + K
# Time domain
Time = np.linspace(0, len(data) / samplerate, num=len(data))
# Amp_time = 20 * np.log10 (abs(data) / 0.00002) # ref = 1
Amp_time = (20*np.log10((data/50))) + K + 20*np.log10(math.sqrt(2)) # reference of sound i.e 20 log10(P rms_value/P ref)+120 dB TODO
# Plot
#fig, axes = plt.subplots(nrows=2, ncols=1)
plt.subplot(2,1,1)
plt.plot(Time, Amp_time)
plt.grid('on')
plt.minorticks_on
plt.xlabel('Time [s]')
plt.ylabel('Instantaneous Level [dBFS]')
plt.xlim([0,5])
plt.subplot(2,1,2)
plt.plot(freq, s_db)
plt.grid('on')
plt.minorticks_on
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [dB]')
plt.xscale('log')
plt.xlim([10,10000])
plt.show()
if __name__ == "__main__":
main()
在代码中,我看到我只对前 8192 个样本进行 FFT,并对具有汉宁窗口的块大小为 8192 的完整 240000(5 秒)样本进行平均 FFT。我是否应该在 5 秒(88 个 FFT)中每 8192 秒执行多个 FFT 并平均幅度以获得结果 FFT?有没有一种有效的方法来执行此操作?