嘿,我正在尝试为学校做一个简单的机器学习应用程序,但由于某种我什至无法理解的原因,我不断获得双倍免费。
float * evaluate(Network net,float * in)
{
int i,j;
float * out;
Neuron cur_neu;
for(i=0,j=0;i<net.n_lay;i++) j = net.lay_sizes[i]>j?net.lay_sizes[i]:j; //Calculating the maximum lay size for output storage
out = (float *) malloc(j*sizeof(float));
for(i=0;i<net.n_lay;i++) //Cycling through layers
{
for(j=0;j<net.lay_sizes[i];j++) //Cycling through Neurons
{
cur_neu=net.matrix[i][j];
out[j] = cur_neu.af(cur_neu.w,in,net.lay_sizes[i-1]); //Storing each answer in out
}
for(j=0;j<net.lay_sizes[i];j++) in[j] = out[j]; //Transfering answers to in
}
return out;
}
float loss(Network net, float **ins_orig, int t_steps)
{
float **profecies;
float st = .5f;
int d_steps = 4;
int t, i, j;
int out_size = net.lay_sizes[net.n_lay - 1];
int in_size = net.lay_sizes[0];
float out = 0.0f;
float **ins;
/*
d_steps = Divination Steps: Number of time steps forward the network has to predict.
The size of the output layer must be d_steps*#ins (deconsidering any conceptual i/os)
t_steps = Total of Steps: Total number of time steps to simulate.
*/
//Copying ins
ins = (float **)malloc(t_steps * sizeof(float *));
for (i = 0; i < t_steps; i++) //I allocate memory for and copy ins_orig to ins here
{
ins[i] = (float *)malloc(in_size * sizeof(float));
for (j = 0; j < in_size; j++)
ins[i][j] = ins_orig[i][j];
}
//
profecies = (float **)malloc(t_steps * sizeof(float *));
for (t = 0; t < t_steps; t++)
{
profecies[t] = evaluate(net, ins[t]);
/*
Profecy 0:
[[a1,b1,c1,d1]
[e1,f1,g1,h1]
[i1,j1,k1,l1]]
Profecy 1:
[[e2,f2,g2,h2]
[i2,j2,k2,l2]
[m2,n2,o2,q2]]
Verification for:
t=0:
loss+= abs(a1-ins[t][0]+b2-ins[t][1]...)
t=1:
t=0:
loss+= abs(e1-ins[t][0]+f2-ins[t][1]...)
*/
for (i = 0; i < d_steps; i++) //i is distance of prediction
{
if (i <= t) // stops negative profecy indexing
{
for (j = 0; j < in_size; j++)
{
out += (ins[t][j] - profecies[t-i][j+in_size*i]) * (ins[t][j] - profecies[t-i][j+in_size*i]) * (1 + st*i); //(1+st*i) The further the prediction, the bigger reward
}
}
}
}
//Free ins
for (i = 0; i < t_steps; i++) //I try to free it here, but to no avail
{
free(ins[i]);
}
free(ins);
return out;
}
我意识到这可能是非常明显的事情,但是我一生都无法弄清楚,并希望得到帮助。
可能不需要的额外细节:评估只是将输入传递给网络(存储在 ins 中)并返回输出输入和输出都存储在浮点“矩阵”中
编辑:添加评估