我希望计算一个通过一组给定点的函数(傅立叶级数)。
类似于这里发生的事情https://gofigure.impara.ai/,但我不希望对其进行动画处理。我只想要这个功能,以便我可以自己绘制形状。我已经阅读了很多描述它的数学资料和动画代码,但我正在努力实现我的实现。
我目前的代码如下【应该可以单独在python notebook中运行】
import matplotlib.pyplot as plt
import scipy
import cmath
import math
import numpy as np
from matplotlib import collections as mc
import pylab as pl
midpoints = [[305.0, 244.5], [293.5, 237.0], [274.5, 367.5], [270.5, 373.5], [229.5, 391.0], [216.0, 396.0], [302.0, 269.0], [295.0, 271.0], [60.5, 146.5], [54.0, 153.0], [52.0, 167.0], [54.0, 153.0], [52.0, 167.0], [45.0, 178.0], [75.0, 76.5], [68.5, 98.5], [75.0, 76.5], [97.0, 58.5], [283.5, 357.5], [274.5, 367.5], [309.0, 255.0], [305.0, 244.5], [309.0, 255.0], [302.0, 269.0], [299.5, 291.5], [300.0, 297.0], [300.0, 297.0], [295.0, 309.5], [62.5, 105.0], [61.0, 118.5], [62.5, 105.0], [68.5, 98.5], [58.0, 139.0], [60.5, 146.5], [241.0, 111.5], [252.0, 124.5], [256.0, 132.5], [252.0, 124.5], [283.0, 356.0], [283.5, 357.5], [300.0, 290.5], [299.5, 291.5], [300.0, 290.5], [296.0, 280.5], [296.0, 280.5], [295.0, 271.0], [158.0, 387.0], [177.0, 396.5], [197.5, 402.0], [192.5, 403.0], [189.5, 400.5], [192.5, 403.0], [197.5, 402.0], [202.5, 401.0], [214.0, 395.5], [216.0, 396.0], [202.5, 401.0], [214.0, 395.5], [233.5, 375.0], [229.5, 391.0], [233.5, 375.0], [249.0, 372.5], [282.5, 340.0], [284.5, 328.0], [284.5, 328.0], [295.0, 309.5], [45.0, 178.0], [49.5, 189.0], [57.0, 198.0], [49.5, 189.0], [238.5, 108.5], [241.0, 111.5], [162.0, 57.5], [170.0, 59.0], [239.5, 204.5], [239.0, 200.0], [293.5, 237.0], [291.0, 227.5], [265.0, 229.5], [291.0, 227.5], [239.0, 189.5], [245.5, 178.0], [239.0, 189.5], [241.0, 193.5], [241.0, 193.5], [239.0, 200.0], [55.0, 119.0], [61.0, 118.5], [53.5, 134.0], [58.0, 139.0], [50.0, 129.0], [55.0, 119.0], [50.0, 129.0], [53.5, 134.0], [107.0, 46.0], [119.5, 50.5], [97.0, 54.0], [97.0, 58.5], [107.0, 46.0], [97.0, 54.0], [150.5, 377.0], [158.0, 387.0], [257.5, 367.5], [270.5, 373.5], [249.0, 372.5], [257.5, 367.5], [280.0, 349.5], [282.5, 340.0], [280.0, 349.5], [283.0, 356.0], [239.5, 90.0], [238.5, 98.0], [238.5, 108.5], [238.5, 98.0], [130.0, 49.0], [119.5, 50.5], [189.0, 65.0], [191.0, 64.5], [189.0, 65.0], [177.0, 62.5], [170.0, 59.0], [177.0, 62.5], [256.0, 132.5], [257.5, 139.5], [128.0, 361.5], [127.5, 360.0], [136.5, 382.5], [131.5, 378.5], [126.5, 370.0], [131.5, 378.5], [128.0, 361.5], [126.5, 370.0], [105.5, 343.5], [101.0, 324.5], [105.5, 343.5], [121.5, 347.5], [126.0, 353.0], [127.5, 360.0], [121.5, 347.5], [126.0, 353.0], [191.0, 64.5], [198.5, 72.0], [237.5, 83.5], [239.5, 90.0], [145.5, 49.0], [138.5, 49.0], [159.0, 57.0], [162.0, 57.5], [145.5, 49.0], [159.0, 57.0], [265.0, 229.5], [254.5, 220.0], [253.0, 216.5], [254.5, 220.0], [253.0, 216.5], [248.0, 208.5], [248.0, 208.5], [239.5, 204.5], [245.0, 173.5], [245.5, 178.0], [250.0, 158.0], [245.0, 173.5], [257.5, 139.5], [250.0, 158.0], [177.0, 396.5], [181.0, 395.5], [181.0, 395.5], [189.5, 400.5], [147.0, 377.0], [150.5, 377.0], [140.5, 381.5], [147.0, 377.0], [140.5, 381.5], [136.5, 382.5], [92.5, 313.5], [101.0, 324.5], [99.5, 290.0], [92.5, 313.5], [98.0, 271.0], [99.5, 290.0], [134.5, 47.5], [130.0, 49.0], [134.5, 47.5], [138.5, 49.0], [73.0, 222.5], [71.0, 214.5], [107.5, 246.0], [110.5, 248.0], [104.0, 266.5], [98.0, 271.0], [69.0, 209.5], [71.0, 214.5], [226.5, 87.0], [237.5, 83.5], [226.5, 87.0], [205.5, 94.5], [205.5, 94.5], [205.5, 77.5], [198.5, 72.0], [205.5, 77.5], [96.5, 244.5], [107.5, 246.0], [109.0, 265.5], [104.0, 266.5], [108.0, 263.5], [110.5, 248.0], [109.0, 265.5], [108.0, 263.5], [65.0, 205.5], [69.0, 209.5], [57.0, 198.0], [56.0, 201.5], [65.0, 205.5], [56.0, 201.5], [90.0, 240.0], [96.5, 244.5], [83.0, 224.0], [73.0, 222.5], [90.5, 231.5], [83.0, 224.0], [90.0, 240.0], [90.5, 231.5]]
x_list = [ p[0] for p in midpoints ]
y_list = [ p[1] for p in midpoints ]
complexmdpts = [ [p[0]+1j*p[1]] for p in midpoints ]
plt.scatter(x_list, y_list, s=50, marker="x", color='y')
coefs = np.fft.fftshift(scipy.fft.fft(complexmdpts))
n = len(coefs)
print("coeffs[{}]:\n{}".format(n, coefs[:5]))
#todo: sort coeffs?
# function in terms of t to trace out curve
def f(t):
ftx=0
fty=0
for i in range(-int(n/2), int(n/2)+1):
ftx+=(coefs[i]*cmath.exp(1j*2*math.pi*i*t/n)).real.tolist()[0]
fty+=(coefs[i]*cmath.exp(1j*2*math.pi*i*t/n)).imag.tolist()[0]
return [ftx/n, fty/n]
lines = [] # store computed lines segments to approximate function
pft = f(0) # compute first point
t_list = np.linspace(0, 2*math.pi, n) # compute list of dts to use when drawing
for t in t_list:
cft = f(t)
# print("f({}): {} \n".format(t, cft))
lines.append([cft,pft])
pft = cft
#draw f(t) approximation
lc = mc.LineCollection(lines)
fig, ax = pl.subplots()
ax.add_collection(lc)
ax.autoscale()
ax.margins(0.1)
这是我的输出:
我想概述的要点
我的函数逼近
我不相信正确使用快速傅立叶变换。从我读到的 fft 是我需要的,我移动它是因为 scipy fft 返回移动的数组,我认为我的代码的其余部分是正确的,假设系数是正确的,这就是我怀疑的原因系数。
变换和我缺少的系数之间是否有一个步骤?或者我的函数评估是否给定系数不正确?还是我错过了其他东西?