我正在尝试在地球引擎代码上实现算法来预测耕地面积。这是我的代码:
var landsatCollection = ee.ImageCollection('LANDSAT/LC08/C01/T1')
.filterDate('2017-01-01', '2017-12-31');
// Make a cloud-free composite.
var composite = ee.Algorithms.Landsat.simpleComposite({
collection: landsatCollection,
asFloat: true
});
// Merge the three geometry layers into a single FeatureCollection.
var newfc = urban.merge(vegetation).merge(water).merge(urban).merge(fields);
// Use these bands for classification.
var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7'];
// The name of the property on the points storing the class label.
var classProperty = 'landcover';
// Sample the composite to generate training data. Note that the
// class label is stored in the 'landcover' property.
var training = composite.select(bands).sampleRegions({
collection: newfc,
properties: [classProperty],
scale: 30
});
// Train a CART classifier.
var classifier = ee.Classifier.smileCart().train({
features: training,
classProperty: [classProperty],
});
// Print some info about the classifier (specific to CART).
print('CART, explained', classifier.explain());
// Classify the composite.
var classified = composite.classify(classifier);
Map.centerObject(newfc);
Map.addLayer(classified, {min: 0, max: 3, palette: ['red', 'blue', 'green','yellow']});
// Optionally, do some accuracy assessment. Fist, add a column of
// random uniforms to the training dataset.
var withRandom = training.randomColumn('random');
// We want to reserve some of the data for testing, to avoid overfitting the model.
var split = 0.7; // Roughly 70% training, 30% testing.
var trainingPartition = withRandom.filter(ee.Filter.lt('random', split));
var testingPartition = withRandom.filter(ee.Filter.gte('random', split));
// Trained with 70% of our data.
var trainedClassifier = ee.Classifier.smileCart().train({
features: trainingPartition,
classProperty: classProperty,
inputProperties: bands
});
// Classify the test FeatureCollection.
var test = testingPartition.classify(trainedClassifier);
// Print the confusion matrix.
var confusionMatrix = test.errorMatrix(classProperty, 'classification');
print('Confusion Matrix', confusionMatrix);
我收到这些错误:
- 购物车,解释字典(错误)功能“1_1_1_1_0_0”的属性“地被”丢失。
- 混淆矩阵 ConfusionMatrix(错误)特征“1_1_1_1_1_0”的属性“地覆”缺失。
- 第 1 层:图层错误:特征 '1_1_1_1_0_0' 的属性 'landcover' 缺失。
给我一些建议来解决这些错误。