0

我已经拟合了以下模型,其中 Y 和 var1,...,vark 是已知变量:

Y ~ 二项式(P,试验)

试验〜制服(0,1e3)

logit(P) = b_1 + b_2*var1 + ... + b_k*vark

b_1, ..., bk ~ 正常(mean=0, sd=100)

错误的代码是:

model
{
    for (k in 1:4) {
        b[k] ~ dnorm(0, 1E-04)
    }
    for (i in 1:60) {
        Y[i] ~ dbin(P[i], trials[i])
        trials[i] ~ dunif(0,1E3)
        logit(P[i]) <- (b[1] + b[2] * var1[i] + b[3] * var2[i] + b[4] * var3[i])
    }
}

我的目标是使用逻辑回归系数的后验分布(即 b_1,...,b_4)来预测不同数据集上的 P(var1,...,var3 的新值)。为此,我需要获得预测后验分布(PPD),但我无法弄清楚如何做到这一点。rstanarm::posterior_predict()RJgas有类似的命令吗?如果没有,有谁知道在这种情况下如何获得 PPD?

4

0 回答 0