我正在使用以下脚本 predictor.py 以便从托管在 GCP AI Platform 中的 Keras 模型中获取预测。
import os
import pickle
import tensorflow as tf
import numpy as np
import logging
class MyPredictor(object):
def __init__(self, model, bow_model):
self._model = model
self._bow_model = bow_model
def predict(self, instances, **kwargs):
vectors = self.embedding([instances])
vectors = vectors.tolist()
output = self._model.predict(vectors)
return output
def embedding(self, statement):
vector = self._bow_model.transform(statement).toarray()
#vector = vector.to_list()
return vector
@classmethod
def from_path(cls, model_dir):
model_path = os.path.join(model_dir, 'model.h5')
model = tf.keras.models.load_model(model_path, compile = False)
preprocessor_path = os.path.join(model_dir, 'bow.pkl')
with open(preprocessor_path, 'rb') as f:
bow_model = pickle.load(f)
return cls(model, bow_model)
但是我得到
Prediction failed: Error when checking input: expected dense_input to have shape (2898,) but got array with shape (1,)
问题似乎是由于我在尝试进行实际预测时输入数据的维度,在行输出 = self._model.predict([vectors]) 中。该模型需要一个形状为 (2898, ) 的向量
我觉得这很奇怪......因为当我打印矢量的形状和尺寸时,我得到以下信息
This is the shape
(1, 2898)
This is the dim number
2
This is the vector
[[0 0 0 ... 0 0 0]]
所以尺寸和形状都很好,它应该真的可以工作......
此外,我进行了测试以获取本地存储的模型的预测并且它工作正常。这是测试文件:
import os
import pickle
import tensorflow as tf
import numpy as np
class MyPredictor(object):
def __init__(self, model, bow_model):
self._model = model
self._bow_model = bow_model
def predict(self, instances, **kwargs):
print("These are the instances ", instances)
vector = self.embedding([instances])
output = self._model.predict(vector)
return output
def embedding(self, statement):
vector = self._bow_model.transform(statement).toarray()
#vector = vector.to_list()
return vector
model_path = 'model.h5'
model = tf.keras.models.load_model(model_path, compile = False)
preprocessor_path = 'bow.pkl'
with open(preprocessor_path, 'rb') as f:
bow_model = pickle.load(f)
instances = 'test'
predictor = MyPredictor(model, bow_model)
outputs = predictor.predict(instances)
print(outputs)