我正在尝试使用MATLAB的cvx 库来实现图像的压缩感知。这与 Steve Brunton 在此处的示例中使用的库相同。我的测试图像是Lenna。
这是我的 MATLAB 脚本:
close all; clear; clc
% read in an image
lenna = imread('lenna.png');
X = lenna(:, :, 2); % greem channel only
X = X(200:249, 100:149); % just a chunk
M = size(X, 1); N = size(X, 2);
x = vectorify(X);
figure, subplot(1, 3, 1), imshow(X), title(strcat("Original Image: ", num2str(M), " by ", num2str(N), " Pixels"))
% Sample randomly
K = 80; %number of random sampled pixels
c = randsample(numel(X), K); %locations of pixels as a list
y = x(c); %values
C = zeros(K, numel(X)); %C(c) = y;%(1:K);
Y = zeros(M, N); % there must be a more elegant way to do this...
for k=1:K
C(k, c(k)) = y(k);
Y2 = rectanglefy(C(k, :), M, N);
Y=Y+Y2;
end
% Y=rectanglefy(C, M, N)
C = C>0; %convert C to a binary matrix
C = double(C); %cast
subplot(1, 3, 2), imshow(Y/255), title(strcat(num2str(K), ' Sampled Pixels'))
% Solve for sparse representation
psi = dftmtx(M*N); psi=real(psi);
Theta = C*psi; n = M*N;
Theta = double(Theta); y = double(y); %cast required
cvx_begin;
variable s_L1(n)
minimize( norm(s_L1, 1) );
subject to
Theta * s_L1 ==y;
cvx_end
xr = psi*s_L1;
Xr = rectanglefy(xr, M, N);
subplot(1, 3, 3), imshow(Xr/255), title('Reconstructed Image')
function x = vectorify(X)
x = reshape(X, [numel(X), 1]);
end
function X = rectanglefy(x, M, N)
X = reshape(x, [M, N]);
end
当我使用 K=80 运行它时,它能够重建图像,虽然它当然不是很接近真实的东西:
但是,如果我将样本数量增加到 800 - 我希望这会使结果更接近 - 求解器告诉我这是不可行的:
在这两者之间,如果我将 K 设置为 180 个随机样本,求解器会产生“失败”,这显然与“不可行”的结果不同:
我不确定问题出在我的代码中还是我对凸优化的理解(相当差),但我的问题是:(a)为什么会发生这种情况?(b) 我应该做些什么来重建这个图像?