0

默认绘图将科学记数法放在 x 轴标签中。这些标签是 2、3、4 和 6,所以这没有多大意义。传统方法似乎依赖于'ScalarFormatter',它不在日志空间中使用......

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit


nu = np.array([34., 10.,  3.,  2.,  1.])
bins = np.array([1.73619534, 2.6928761 , 3.64955685, 4.6062376 , 6.5195991 ])
x_err = (bins[2]-bins[1])/2*(nu/nu)

def func_powerlaw(x, m, c):
    return x**m * c
target_func = func_powerlaw
popt, pcov = curve_fit(target_func, bins, nu, maxfev=2000, p0 = np.asarray([-1,34]))
perr = np.sqrt(np.diag(pcov))
x_line = np.linspace(1.7,6.7,41)
fit_curve = target_func(x_line, *popt)
fit_curve_u = target_func(x_line, popt[0]+perr[0],popt[1]+perr[1])
fit_curve_l = target_func(x_line, popt[0]-perr[0],popt[1]-perr[1])


fig, ax = plt.subplots()
# plt.loglog(x,f_x, 'b')
ax.errorbar(bins,nu, yerr=None, xerr=x_err, marker='.',linewidth = 0, elinewidth=2, color = 'k')
ax.loglog(x_line, fit_curve, '-')
ax.fill_between(x_line, fit_curve_l, fit_curve_u,alpha = 0.2)
# labels = ['high', 'low', 37337]
ax.set_xscale('log') # yes this is redundant
ax.set_xticks([2,3,4,5]) #this line ends up not working ):
ax.set_xlim([1.5,8.5])

从运行代码中得到的情节

4

1 回答 1

0

这个问题是一个重复,在这里找到了答案:How to change log-scale tick labels in matplotlib

回答:

from matplotlib.ticker import StrMethodFormatter, NullFormatter
ax.xaxis.set_major_formatter(StrMethodFormatter('{x:.1f}'))
ax.xaxis.set_minor_formatter(NullFormatter())
于 2021-03-10T20:55:46.250 回答