我正在尝试使用 CoQ/SSReflect 证明nat
来证明rat
. 中的当前证明状态Open Scope ring_scope
是
(price bs i - price bs' i <= tnth bs i * ('ctr_ (sOi i) - 'ctr_ (sOi i')))%N
→ (price bs i)%:~R - (price bs' i)%:~R <=
(value_per_click i)%:~R * (('ctr_ (sOi i))%:~R - ('ctr_ (sOi i'))%:~R)
并且,使用Set Printing All
,它显示为
forall
_ : is_true
(leq (subn (price bs i) (price bs' i))
(muln (@nat_of_ord p (@tnth n bid bs i))
(subn (@nat_of_ord q (@tnth k ctr cs (sOi i)))
(@nat_of_ord q (@tnth k ctr cs (sOi i')))))),
is_true
(@Order.le ring_display (Num.NumDomain.porderType rat_numDomainType)
(@GRing.add rat_ZmodType
(@intmul (GRing.Ring.zmodType rat_Ring) (GRing.one rat_Ring) (Posz (price bs i)))
(@GRing.opp rat_ZmodType
(@intmul (GRing.Ring.zmodType rat_Ring) (GRing.one rat_Ring) (Posz (price bs' i)))))
(@GRing.mul rat_Ring
(@intmul (GRing.Ring.zmodType rat_Ring) (GRing.one rat_Ring)
(Posz (value_per_click i)))
(@GRing.add (GRing.Ring.zmodType rat_Ring)
(@intmul (GRing.Ring.zmodType rat_Ring) (GRing.one rat_Ring)
(Posz (@nat_of_ord q (@tnth k ctr cs (sOi i)))))
(@GRing.opp (GRing.Ring.zmodType rat_Ring)
(@intmul (GRing.Ring.zmodType rat_Ring) (GRing.one rat_Ring)
(Posz (@nat_of_ord q (@tnth k ctr cs (sOi i')))))))))
我一直在尝试使用各种rewrite
,例如ler_nat
, PoszM
, intrM
,但收效甚微。谁能给我一些关于如何进行的提示?
PS:我无法提供一个最小的工作示例,因为我并没有完全掌握我在这里所做的事情;)