虽然这不是问题的答案,但对较小示例的一些调查表明该问题并非特定LSC.SHA2.Hash_SHA256
于 libsparkcrypto 库中的函数。看起来在证明具有数组类型参数的函数的“纯度”方面存在普遍的困难。另一方面,具有标量类型参数的函数按预期证明。
所以问题可能是数组上缺少一些条件,求解器超时太短,或者只是 SPARK 目前无法证明这样的事情(例如,参见SPARK UG 中的第7.8.3节)。关于缺失的条件:我(还)不确定这些缺失的条件是什么,我已经添加了很多,但似乎没有任何帮助。
如果您是证明专家,那么您可以通过检查在手动证明环境中失败的“目标”来进一步调查问题(有关详细信息,请参见 SPARK UG 中的第7.1.8节)。不幸的是,我在这里缺少合适的博士来了解 SPARK 工具的这一部分并对此有所帮助;-)。
pkg.ads
package Pkg with SPARK_Mode, Pure is
--------------------------------------------
-- Functions with a scalar type parameter --
--------------------------------------------
function Fcn_Scalar_1 (X : Integer) return Integer;
function Fcn_Scalar_2 (X : Integer) return Integer
with Pure_Function;
function Fcn_Scalar_3 (X : Integer) return Integer
with
Global => null,
Depends => (Fcn_Scalar_3'Result => X);
function Fcn_Scalar_4 (X : Integer) return Integer
with Post => Fcn_Scalar_4'Result = X;
--------------------------------------------
-- Functions with an array type parameter --
--------------------------------------------
type Arr is array (Natural range <>) of Integer;
function Fcn_Array_1 (X : Arr) return Integer;
function Fcn_Array_2 (X : Arr) return Integer
with Pure_Function;
function Fcn_Array_3 (X : Arr) return Integer
with
Global => null,
Depends => (Fcn_Array_3'Result => X);
function Fcn_Array_4 (X : Arr) return Arr
with Post => Fcn_Array_4'Result = X;
end Pkg;
测试广告
with Pkg; use Pkg;
package Test with SPARK_Mode is
-- Is_Equal_Scalar_1 : Postcondition proved.
-- Is_Equal_Scalar_2 : Postcondition proved.
-- Is_Equal_Scalar_3 : Postcondition proved.
-- Is_Equal_Scalar_4 : Postcondition proved.
function Is_Equal_Scalar_1 (X, Y : Integer) return Boolean is
(if X = Y then True else Fcn_Scalar_1 (X) = Fcn_Scalar_1 (Y))
with Post => Is_Equal_Scalar_1'Result = (Fcn_Scalar_1 (X) = Fcn_Scalar_1 (Y));
function Is_Equal_Scalar_2 (X, Y : Integer) return Boolean is
(if X = Y then True else Fcn_Scalar_2 (X) = Fcn_Scalar_2 (Y))
with Post => Is_Equal_Scalar_2'Result = (Fcn_Scalar_2 (X) = Fcn_Scalar_2 (Y));
function Is_Equal_Scalar_3 (X, Y : Integer) return Boolean is
(if X = Y then True else Fcn_Scalar_3 (X) = Fcn_Scalar_3(Y))
with Post => Is_Equal_Scalar_3'Result = (Fcn_Scalar_3 (X) = Fcn_Scalar_3 (Y));
function Is_Equal_Scalar_4 (X, Y : Integer) return Boolean is
(if X = Y then True else Fcn_Scalar_4 (X) = Fcn_Scalar_4(Y))
with Post => Is_Equal_Scalar_4'Result = (Fcn_Scalar_4 (X) = Fcn_Scalar_4 (Y));
-- Is_Equal_Array_1 : Postcondition NOT proved.
-- Is_Equal_Array_2 : Postcondition NOT proved.
-- Is_Equal_Array_3 : Postcondition NOT proved.
-- Is_Equal_Array_4 : Postcondition proved, but only because of the postcondition on Fcn_Array_4.
function Is_Equal_Array_1 (X, Y : Arr) return Boolean is
(if X = Y then True else Fcn_Array_1 (X) = Fcn_Array_1 (Y))
Pre => X'First = 0 and Y'First = 0 and X'Length = Y'Length and X'Length > 0 and Y'Length > 0,
Post => Is_Equal_Array_1'Result = (Fcn_Array_1 (X) = Fcn_Array_1 (Y));
function Is_Equal_Array_2 (X, Y : Arr) return Boolean is
(if X = Y then True else Fcn_Array_2 (X) = Fcn_Array_2 (Y))
with
Pre => X'First = 0 and Y'First = 0 and X'Length = Y'Length and X'Length > 0 and Y'Length > 0,
Post => Is_Equal_Array_2'Result = (Fcn_Array_2 (X) = Fcn_Array_2 (Y));
function Is_Equal_Array_3 (X, Y : Arr) return Boolean is
(if X = Y then True else Fcn_Array_3 (X) = Fcn_Array_3 (Y))
with
Pre => X'First = 0 and Y'First = 0 and X'Length = Y'Length and X'Length > 0 and Y'Length > 0,
Post => Is_Equal_Array_3'Result = (Fcn_Array_3 (X) = Fcn_Array_3 (Y));
function Is_Equal_Array_4 (X, Y : Arr) return Boolean is
(if X = Y then True else Fcn_Array_4 (X) = Fcn_Array_4 (Y))
with Post => Is_Equal_Array_4'Result = (Fcn_Array_4 (X) = Fcn_Array_4 (Y));
end Test;
输出(gnatprove)
$ gnatprove -Pdefault.gpr --level=2 -j0 -u test.ads --report=statistics
Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
test.ads:12:21: info: postcondition proved (CVC4: 2 VC in max 0.0 seconds and 1 step)
test.ads:16:21: info: postcondition proved (CVC4: 2 VC in max 0.0 seconds and 1 step)
test.ads:20:21: info: postcondition proved (CVC4: 2 VC in max 0.0 seconds and 1 step)
test.ads:24:21: info: postcondition proved (CVC4: 2 VC in max 0.0 seconds and 1 step)
test.ads:35:18: medium: postcondition might fail, cannot prove Is_Equal_Array_1'Result = (Fcn_Array_1 (X) = Fcn_Array_1 (Y)) (e.g. when X = (others => 0) and X'First = 0 and X'Last = 0 and Y = (others => 0) and Y'First = 0 and Y'Last = 0)
test.ads:41:18: medium: postcondition might fail, cannot prove Is_Equal_Array_2'Result = (Fcn_Array_2 (X) = Fcn_Array_2 (Y)) (e.g. when X = (others => 0) and X'First = 0 and X'Last = 0 and Y = (others => 0) and Y'First = 0 and Y'Last = 0)
test.ads:47:18: medium: postcondition might fail, cannot prove Is_Equal_Array_3'Result = (Fcn_Array_3 (X) = Fcn_Array_3 (Y)) (e.g. when X = (others => 0) and X'First = 0 and X'Last = 0 and Y = (others => 0) and Y'First = 0 and Y'Last = 0)
test.ads:51:21: info: postcondition proved (CVC4: 2 VC in max 0.0 seconds and 1 step)
Summary logged in /obj/gnatprove/gnatprove.out
更新
转念一想,还有更多。虽然仍然无法解决问题,但我意识到Is_Equal
在数组类型的情况下,函数的先决条件是强制性的。这是因为数组的相等运算符在 Ada 中的行为方式。数组上的相等运算符不考虑索引边界(RM 4.5.2 (18)),它只检查数组长度及其组件值。因此,以下数组A1
和A2
被认为是相等的:
type Arr is array (Natural range <>) of Integer;
A1 : constant Arr (0 .. 3) := (1, 2, 3, 4);
A2 : constant Arr (1 .. 4) := (1, 2, 3, 4); -- Bounds on index differ.
现在将简单函数定义First_Index
为:
function First_Index (A : Arr) return Integer is (A'First);
此函数返回数组的索引下限。不幸的是,由于显而易见的原因,gnatprove
将无法仅使用后置条件来证明Is_Equal
此函数的函数。First_Index
function Is_Equal (X, Y : Arr) return Boolean is
(if X = Y then True else First_Index (X) = First_Index (Y))
with Post => Is_Equal'Result = (First_Index (X) = First_Index (Y));
因此,前提条件是强制性的,因为“纯”函数的结果可能取决于数组的边界。有了这个前提,就可以证明这个功能(见下文)。对于前面示例中的情况,这不起作用。
主文件
with Ada.Text_IO; use Ada.Text_IO;
procedure Main with SPARK_Mode is
type Arr is array (Natural range <>) of Integer;
function First_Index (A : Arr) return Integer is (A'First);
function Is_Equal (X, Y : Arr) return Boolean is
(if X = Y then True else First_Index (X) = First_Index (Y))
with
Pre => X'First = 0 and Y'First = 0,
Post => Is_Equal'Result = (First_Index (X) = First_Index (Y));
A1 : constant Arr (0 .. 3) := (1, 2, 3, 4);
A2 : constant Arr (1 .. 4) := (1, 2, 3, 4); -- Bounds on index differ.
begin
if (A1 = A2) then
Put_Line ("Equal");
else
Put_Line ("Not Equal");
end if;
end Main;
输出(主要)
Equal
输出(gnatprove)
$ gnatprove -Pdefault.gpr --level=1 -j0 -u main.adb --report=statistics
Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
main.adb:16:18: info: postcondition proved (CVC4: 2 VC in max 0.0 seconds and 1 step)
Summary logged in obj/gnatprove/gnatprove.out