我在 mnist 数据集上使用原始神经网络,但是我的模式卡在验证数据的 42% 准确度。
数据为 csv,格式为:60000 行(用于训练数据)和 785 列,第一个是标签。
以下是分割和转换 CSV 数据的代码,代表图像 (28x28):
import pandas as pd
import numpy as np
import tensorflow as tf
df = pd.read_csv('mnist_train.csv')
dff = pd.read_csv('mnist_test.csv')
#train set
label = np.array(df.iloc[:,0])
data = np.array(df.iloc[:,1:])
sep = []
for i in range(60000):
temp = []
for j in range(28):
temp.append(data[i,j*28:(j+1)*28])
sep.append(temp)
sep = np.array(sep)
for i in range(60000):
for j in range(28):
for k in range(28):
sep[i,j,k] = sep[i,j,k]/255
labels_array = []
for i in label:
if i==0:
labels_array.append([1,0,0,0,0,0,0,0,0,0])
if i==1:
labels_array.append([0,1,0,0,0,0,0,0,0,0])
if i==2:
labels_array.append([0,0,1,0,0,0,0,0,0,0])
if i==3:
labels_array.append([0,0,0,1,0,0,0,0,0,0])
if i==4:
labels_array.append([0,0,0,0,1,0,0,0,0,0])
if i==5:
labels_array.append([0,0,0,0,0,1,0,0,0,0])
if i==6:
labels_array.append([0,0,0,0,0,0,1,0,0,0])
if i==7:
labels_array.append([0,0,0,0,0,0,0,1,0,0])
if i==8:
labels_array.append([0,0,0,0,0,0,0,0,1,0])
if i==9:
labels_array.append([0,0,0,0,0,0,0,0,0,1])
labels_array = np.array(labels_array)
#train
label_t = np.array(dff.iloc[:,0])
data_t = np.array(dff.iloc[:,1:])
sep_t = []
for i in range(10000):
temp = []
for j in range(28):
temp.append(data_t[i,j*28:(j+1)*28])
sep_t.append(temp)
sep_t = np.array(sep_t)
for i in range(10000):
for j in range(28):
for k in range(28):
sep_t[i,j,k] = sep_t[i,j,k]/255
labels_array_t = []
for i in label_t:
if i==0:
labels_array_t.append([1,0,0,0,0,0,0,0,0,0])
if i==1:
labels_array_t.append([0,1,0,0,0,0,0,0,0,0])
if i==2:
labels_array_t.append([0,0,1,0,0,0,0,0,0,0])
if i==3:
labels_array_t.append([0,0,0,1,0,0,0,0,0,0])
if i==4:
labels_array_t.append([0,0,0,0,1,0,0,0,0,0])
if i==5:
labels_array_t.append([0,0,0,0,0,1,0,0,0,0])
if i==6:
labels_array_t.append([0,0,0,0,0,0,1,0,0,0])
if i==7:
labels_array_t.append([0,0,0,0,0,0,0,1,0,0])
if i==8:
labels_array_t.append([0,0,0,0,0,0,0,0,1,0])
if i==9:
labels_array_t.append([0,0,0,0,0,0,0,0,0,1])
labels_array_t = np.array(labels_array_t)
以下是学习网络:
Dense = tf.keras.layers.Dense
fc_model = tf.keras.Sequential(
[
tf.keras.Input(shape=(28,28)),
tf.keras.layers.Flatten(),
Dense(128, activation='relu'),
Dense(32, activation='relu'),
Dense(10, activation='softmax')])
fc_model.compile(optimizer="Adam", loss="categorical_crossentropy", metrics=["accuracy"])
history = fc_model.fit(sep, labels_array, batch_size=128, validation_data=(sep_t, labels_array_t) ,epochs=35)
以下是我得到的结果:
Train on 60000 samples, validate on 10000 samples
Epoch 1/35
60000/60000 [==============================] - 2s 31us/sample - loss: 1.8819 - accuracy: 0.3539 - val_loss: 1.6867 - val_accuracy: 0.4068
Epoch 2/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.6392 - accuracy: 0.4126 - val_loss: 1.6407 - val_accuracy: 0.4098
Epoch 3/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.5969 - accuracy: 0.4224 - val_loss: 1.6202 - val_accuracy: 0.4196
Epoch 4/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.5735 - accuracy: 0.4291 - val_loss: 1.6158 - val_accuracy: 0.4220
Epoch 5/35
60000/60000 [==============================] - 1s 25us/sample - loss: 1.5561 - accuracy: 0.4324 - val_loss: 1.6089 - val_accuracy: 0.4229
Epoch 6/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.5423 - accuracy: 0.4377 - val_loss: 1.6074 - val_accuracy: 0.4181
Epoch 7/35
60000/60000 [==============================] - 2s 25us/sample - loss: 1.5309 - accuracy: 0.4416 - val_loss: 1.6053 - val_accuracy: 0.4226
Epoch 8/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.5207 - accuracy: 0.4435 - val_loss: 1.6019 - val_accuracy: 0.4252
Epoch 9/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.5111 - accuracy: 0.4480 - val_loss: 1.6015 - val_accuracy: 0.4233
Epoch 10/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.5020 - accuracy: 0.4517 - val_loss: 1.6038 - val_accuracy: 0.4186
Epoch 11/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.4954 - accuracy: 0.4530 - val_loss: 1.6096 - val_accuracy: 0.4209
Epoch 12/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.4885 - accuracy: 0.4554 - val_loss: 1.6003 - val_accuracy: 0.4278
Epoch 13/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4813 - accuracy: 0.4573 - val_loss: 1.6072 - val_accuracy: 0.4221
Epoch 14/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.4749 - accuracy: 0.4598 - val_loss: 1.6105 - val_accuracy: 0.4242
Epoch 15/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4693 - accuracy: 0.4616 - val_loss: 1.6160 - val_accuracy: 0.4213
Epoch 16/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4632 - accuracy: 0.4626 - val_loss: 1.6149 - val_accuracy: 0.4266
Epoch 17/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4580 - accuracy: 0.4642 - val_loss: 1.6145 - val_accuracy: 0.4267
Epoch 18/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4532 - accuracy: 0.4656 - val_loss: 1.6169 - val_accuracy: 0.4330
Epoch 19/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.4479 - accuracy: 0.4683 - val_loss: 1.6198 - val_accuracy: 0.4236
Epoch 20/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.4436 - accuracy: 0.4693 - val_loss: 1.6246 - val_accuracy: 0.4264
Epoch 21/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4389 - accuracy: 0.4713 - val_loss: 1.6300 - val_accuracy: 0.4254
Epoch 22/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4350 - accuracy: 0.4730 - val_loss: 1.6296 - val_accuracy: 0.4258
Epoch 23/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4328 - accuracy: 0.4727 - val_loss: 1.6279 - val_accuracy: 0.4257
Epoch 24/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4282 - accuracy: 0.4742 - val_loss: 1.6327 - val_accuracy: 0.4209
Epoch 25/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4242 - accuracy: 0.4745 - val_loss: 1.6387 - val_accuracy: 0.4256
Epoch 26/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4210 - accuracy: 0.4765 - val_loss: 1.6418 - val_accuracy: 0.4240
Epoch 27/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4189 - accuracy: 0.4773 - val_loss: 1.6438 - val_accuracy: 0.4237
Epoch 28/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4151 - accuracy: 0.4781 - val_loss: 1.6526 - val_accuracy: 0.4184
Epoch 29/35
60000/60000 [==============================] - 1s 25us/sample - loss: 1.4129 - accuracy: 0.4788 - val_loss: 1.6572 - val_accuracy: 0.4190
Epoch 30/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.4097 - accuracy: 0.4801 - val_loss: 1.6535 - val_accuracy: 0.4225
Epoch 31/35
60000/60000 [==============================] - 1s 24us/sample - loss: 1.4070 - accuracy: 0.4795 - val_loss: 1.6689 - val_accuracy: 0.4188
Epoch 32/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4053 - accuracy: 0.4809 - val_loss: 1.6663 - val_accuracy: 0.4194
Epoch 33/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4029 - accuracy: 0.4831 - val_loss: 1.6618 - val_accuracy: 0.4220
Epoch 34/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.4000 - accuracy: 0.4832 - val_loss: 1.6603 - val_accuracy: 0.4270
Epoch 35/35
60000/60000 [==============================] - 1s 23us/sample - loss: 1.3979 - accuracy: 0.4845 - val_loss: 1.6741 - val_accuracy: 0.4195
这仅仅是因为优化器吗?我尝试了 SGD,但成功了!