0

对于以下指向 hive 表的分区并获取列但没有真正重的简单示例,spark 的惰性求值是否真的执行了任何操作:

>>> spark.sql('select * from default.test_table where day="2021-01-01"').columns
[Stage 0:===============================>                   (1547 + 164) / 2477]#
# java.lang.OutOfMemoryError: Java heap space
# -XX:OnOutOfMemoryError="kill -9 %p"
#   Executing /bin/sh -c "kill -9 28049"...
ERROR:root:Exception while sending command.
Traceback (most recent call last):
  File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 985, in send_command
    response = connection.send_command(command)
  File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1164, in send_command
    "Error while receiving", e, proto.ERROR_ON_RECEIVE)
Py4JNetworkError: Error while receiving
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/lib/spark/python/pyspark/sql/session.py", line 767, in sql
    return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped)
  File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
  File "/usr/lib/spark/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 336, in get_return_value
py4j.protocol.Py4JError: An error occurred while calling o61.sql

我不明白为什么仅仅指向一个蜂巢表会占用 PySpark(版本 2.4.3)的大量内存。向驱动程序和执行程序(驱动程序内存,执行程序内存)添加内存只会使查询永远卡住,而不会输出任何有用的消息。有没有办法在定义数据框时抑制 PySpark 的执行?

4

1 回答 1

0

您可以限制查询以避免内存错误:

spark.sql('select * from default.test_table where day="2021-01-01" limit 1').columns
于 2021-02-12T11:46:03.083 回答