0

我已经在 MCTS AI 上工作了几天了。我试图在井字游戏上实现它,这是我能想到的最简单的游戏,但出于某种原因,我的人工智能总是做出错误的决定。我已经尝试更改 UCB1 的探索常数的值、每次搜索的迭代次数,甚至是赢得、失败和平局所获得的分数(试图让平局更有回报,因为这个 AI 只打第二,并尝试平局,否则获胜)。截至目前,代码如下所示:

import random
import math
import copy
class tree:
    def __init__(self, board):
        self.board = board
        self.visits = 0
        self.score = 0
        self.children = []
class mcts:
    def search(self, mx, player,):
        root = tree(mx)
        for i in range(1200):
            leaf = mcts.expand(self, root.board, player, root)
            result = mcts.rollout(self, leaf)
            mcts.backpropagate(self, leaf, root, result)
        return mcts.best_child(self, root).board

    def expand(self, mx, player, root):
        plays = mcts.generate_states(self, mx, player) #all possible plays
        if root.visits == 0:
            for j in plays:
                root.children.append(j) #create child_nodes in case they havent been created yet
        for j in root.children:
            if j.visits == 0:
                return j #first iterations of the loop
        for j in plays:
            if mcts.final(self, j.board, player):
                return j
        return mcts.best_child(self, root) #choose the one with most potential

    def rollout(self, leaf):
        mx = leaf.board
        aux = 1
        while mcts.final(self, mx, "O") != True:
            if aux == 1: # "X" playing
                possible_states = []
                possible_nodes = mcts.generate_states(self, mx, "X")
                for i in possible_nodes:
                    possible_states.append(i.board)
                if len(possible_states) == 1: mx =  possible_states[0]
                else:
                    choice = random.randrange(0, len(possible_states) - 1)
                    mx = possible_states[choice]
                if mcts.final(self, mx, "X"): #The play by "X" finished the game
                    break
            elif aux == 0: # "O" playing
                possible_states = []
                possible_nodes = mcts.generate_states(self, mx, "O")
                for i in possible_nodes:
                    possible_states.append(i.board)
                if len(possible_states) == 1: mx =  possible_states[0]
                else:
                    choice = random.randrange(0, len(possible_states) - 1)
                    mx = possible_states[choice]
            aux += 1
            aux = aux%2
        if mcts.final(self, mx, "X"):
            for i in range(len(mx)):
                for k in range(len(mx[i])):
                    if mx[i][k] == "-":
                        return -1 #loss
            return 0 #tie
        elif mcts.final(self, mx, "O"):
            for i in range(len(mx)):
                for k in range(len(mx[i])):
                    if mx[i][k] == "-":
                        return 1 #win


    def backpropagate(self, leaf, root, result): # updating our prospects stats
        leaf.score += result
        leaf.visits += 1
        root.visits += 1

    def generate_states(self, mx, player):
        possible_states = [] #generate child_nodes
        for i in range(len(mx)):
            for k in range(len(mx[i])):
                if mx[i][k] == "-":
                    option = copy.deepcopy(mx)
                    option[i][k] = player
                    child_node = tree(option)
                    possible_states.append(child_node)
        return possible_states

    def final(self,mx, player): #check if game is won
        possible_draw = True
        win = False
        for i in mx: #lines
            if i == [player, player, player]:
                win = True
                possible_draw = False
        if mx[0][0] == player: #diagonals
            if mx[1][1] == player:
                if mx[2][2] == player:
                    win = True
                    possible_draw = False
        if mx[0][2] == player:
            if mx[1][1] == player:
                if mx[2][0] == player:
                    win = True
                    possible_draw = False
        for i in range(3): #columns
            if mx[0][i] == player and mx[1][i] == player and mx[2][i] == player:
                win = True
                possible_draw = False
        for i in range(3):
            for k in range(3):
                if mx[i][k] == "-":
                    possible_draw = False
        if possible_draw:
            return possible_draw
        return win

    def calculate_score(self, score, child_visits, parent_visits, c): #UCB1
        return score / child_visits + c * math.sqrt(math.log(parent_visits) / child_visits)

    def best_child(self, root): #returns most promising node
        treshold = -1*10**6
        for j in root.children:
            potential = mcts.calculate_score(self, j.score, j.visits, root.visits, 2)
            if potential > treshold:
                win_choice = j
                treshold = potential
        return win_choice

#todo the AI takes too long for each play, optimize that by finding the optimal approach in the rollout phase

首先,这个 AI 的目的是返回一个改变的矩阵,在这种情况下他可以做出最好的发挥。我发现自己质疑 MCTS 算法是否是所有这些失败游戏背后的原因,因为它的实现中可能存在一些错误。话虽如此,在我看来,代码执行以下操作:

  1. 检查根是否已经有它的孩子,如果有,选择最有希望的。
  2. 展开随机模拟并保存结果。
  3. 更新叶子的分数、访问次数和根的访问次数。
  4. 在我的示例中重复 1200 次迭代
  5. 返回可能的最佳移动(矩阵,child_node)。

为什么它不起作用?为什么选择糟糕的游戏而不是最佳的游戏?算法是否执行错误?

4

1 回答 1

0

我的错误是在扩展阶段选择了访问次数最多的节点,而根据 UCB1 公式,它应该是最具潜力的节点。在执行一些 if 子句时,我也遇到了一些错误,因为所有的损失都没有被计算在内。

于 2021-02-08T17:22:37.273 回答