所以我的问题是,我想将几个热图绘制为一个多图,其中我有 X、Y 轴对数,并且还向热图添加补丁,以突出显示具有调整 alpha 值的某些区域(见附图)。问题是,使用 pcolormesh,您可以轻松地对 X,Y 使用 logscale,因为它使用精确的数据来显示,但是 seaborn 可以只使用数据的索引。另一方面,使用 pcolormesh 我没有找到添加 pacthes 的方法,但是使用 seaborn 很容易做到......
所以我想提出一个解决方案,其中可以完成对数缩放和添加 pacthes 到绘图......
我添加了一部分代码,并附上了一张我可以用 seaborn 做的图片。
所以这里是 seaborn heatmap multiplot 的代码,在 jupyter-notebook 中完成了 sime custom x,ytics:
def HeatMapPlotter(alphaval,im_w,im_h,tissue_type,hl_x_min,hl_x_max,hl_y_min,hl_y_max): # alpha value of heatmap highlights, image width and height, type of tissue: blood or colon
data_type = ["n","gamma","d","r0"]
c_labels =["$n_\mathrm{drift}$","$\gamma_\mathrm{drift}$","$d_\mathrm{drift}$","$r_0^\mathrm{drift}$"]
vminR = [0.99,1.99,0.99,1e-4]
sb.set_style('white', {'axes.linewidth': 0.5})
plt.rcParams['xtick.major.size'] = 20
plt.rcParams['xtick.major.width'] = 4
plt.rcParams['xtick.bottom'] = True
plt.rcParams['ytick.left'] = True
if tissue_type=="blood":
points = p_b
n_points = n_p_b
Ns = Nsb
mus = musb
Nsl = ['{:.1e}'.format(i) for i in Nsb]
Nsl = [reformatE(i) for i in Nsl]
musl = ['{:.1e}'.format(j) for j in musb]
musl = [reformatE(i) for i in musl]
else:
points = p_c
n_points = n_p_c
Ns = Nsc
mus = musc
Nsl = ['{:.1e}'.format(i) for i in Nsc]
Nsl = [reformatE(i) for i in Nsl]
musl = ['{:.1e}'.format(j) for j in musc]
musl = [reformatE(i) for i in musl]
dataColl = [0]*8
d_index = 0
for d in range(8):
if d_index==4:
d_index=0
if d<4:
dataColl[d] = array([point[data_type[d_index]] for point in points]).reshape(RES,RES)
else:
dataColl[d] = array([point[data_type[d_index]] for point in n_points]).reshape(RES,RES)
d_index+=1
y, x = np.meshgrid(mus, Ns)
fig, axes = plt.subplots(figsize=(im_w,im_h), nrows=2, ncols=4);
m_index=0
#fig.suptitle(tissue_type+" "+"scd (top) and neutral (bottom)")
for m, ax in zip(range(0,8), axes.flat):
plt.figure(m);
sb.set(font_scale=cb_scale); # set colorbar font scale
if m_index==4:
m_index=0
if m==3 or m==7:
sb.heatmap(dataColl[m], cmap = ListedColormap(newcolors),norm=LogNorm(),cbar_kws={'label': c_labels[m_index]},vmin=vminR[m_index], vmax=amax(dataColl[m]),ax=ax)
else:
sb.heatmap(dataColl[m], cmap = ListedColormap(newcolors),cbar_kws={'label': c_labels[m_index]},vmin=vminR[m_index], vmax=amax(dataColl[m]),ax=ax)
if m%4==0:
ax.set_ylabel("$\mu$",fontsize=mu_l_s);
else:
ax.set_ylabel(" ",fontsize=mu_l_s);
ax.set_xticklabels(Nsl,rotation=x_rot); #set xtics label (default is 0,1,2...)
ax.set_yticklabels(musl,rotation=y_rot); #set ytics label (default is 0,1,2...)
plt.setp(ax.get_xticklabels()[1::2], visible=False); # every 2nd tic is highlighted for xtics
plt.setp(ax.get_yticklabels()[1::2], visible=False); # every 2nd tic is highlighted for ytics
ax.set_xlabel("\n$N$",fontsize=N_l_s); # set xlabel
ax.tick_params(direction='out', length=16, width=6, colors='black',
grid_color='black', grid_alpha=1.0,labelsize=tick_ls); # tick settings
# set the highlighted box and set alpha by user input (see description in a cell below)
ax.add_patch(Rectangle((hl_x_min, hl_y_min), hl_x_max-hl_x_min, hl_y_max-hl_y_min, fill=False, edgecolor='black', linestyle = '--', lw=5,alpha=1.0));
for r in range(RES):
for c in range(RES):
if (r>=hl_x_min and r<hl_x_max) and (c<hl_y_max and c>=hl_y_min):
continue
else:
ax.add_patch(Rectangle((r, c), 1, 1, fill=True, color = 'gray', edgecolor=None, lw=0, alpha=alphaval));
m_index +=1
plt.tight_layout();
以及 pcolormesh 版本的代码,其中 logscale 工作并添加补丁不...
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.ticker as plticker
from matplotlib import cm
from matplotlib.colors import ListedColormap
from matplotlib.colors import LogNorm
from matplotlib.patches import Rectangle
import matplotlib.patches as patches
import matplotlib as mpl
data_type = ["n","gamma","d","r0"]
c_labels =["$n_\mathrm{drift}$","$\gamma_\mathrm{drift}$","$d_\mathrm{drift}$","$r_0^\mathrm{drift}$"]
vminR = [1.0,1.99,1.0,1e-4]
hl_x_min,hl_x_max,hl_y_min,hl_y_max = 3,10,2,8
alphaval = 0.6
labels_size = 24 # X,Y,Z labels size
cb_ts = 15 # colorbar tick number font size
tick_ls = 15
title_s = 60 # size of title
im_w,im_h = 40,12 # image width and height
cb_scale = 4.8 # scale of colorbar font size
x_rot,y_rot = 90,0 # rotation of x and y tick labels
dataColl = [0]*8
d_index = 0
for d in range(8):
if d_index==4:
d_index=0
if d<4:
dataColl[d] = array([point[data_type[d_index]] for point in points]).reshape(RES,RES)
else:
dataColl[d] = array([point[data_type[d_index]] for point in n_points]).reshape(RES,RES)
d_index+=1
fig, axes = plt.subplots(figsize=(im_w,im_h), nrows=2, ncols=4);
m_index=0
#fig.suptitle(tissue_type+" "+"scd (top) and neutral (bottom)")
fig.text(0.483,0.86,"blood \n \n",fontsize = 35)
fig.text(0.488,0.82,"scd \n \n",fontsize = 35)
fig.text(0.48,0.38,"neutral \n \n",fontsize = 35)
plt.subplots_adjust(wspace=0.1, hspace=0.5)
for m, ax in zip(range(0,8), axes.flat):
y, x = np.meshgrid(mus, Ns)
z = dataColl[m]
z=z.T
if m_index==4:
m_index=0
if m==3 or m==7:
cmesh = ax.pcolormesh(x, y, z,norm=LogNorm(),cmap=ListedColormap(newcolors),vmin=vminR[m_index],vmax=amax(z),antialiased=True, shading="nearest" , snap=True,edgecolors="face")
else:
cmesh = ax.pcolormesh(x, y, z,cmap=ListedColormap(newcolors),vmin=vminR[m_index],vmax=amax(z),antialiased=True, shading="nearest" , snap=True,edgecolors="face")
cb=fig.colorbar(cmesh,ax=ax)
cb.set_label(label=c_labels[m_index],fontsize=labels_size,rotation = 90)
ax.set_xscale('log')
ax.set_yscale('log')
ax.tick_params(direction='out', length=4, width=2, colors='black',
grid_color='black', grid_alpha=1.0,labelsize=tick_ls); # tick settings
cb.ax.tick_params(labelsize=cb_ts)
if m>3:
ax.set_xlabel("$N$",fontsize=labels_size)
if m_index ==0:
ax.set_ylabel("$\mu$",fontsize=labels_size)
# set the highlighted box and set alpha by user input (see description in a cell below)
ax.add_patch(Rectangle((hl_x_min, hl_y_min), hl_x_max-hl_x_min, hl_y_max-hl_y_min, fill=False, edgecolor='black', linestyle = '--', lw=5,alpha=1.0));
for r in range(RES):
for c in range(RES):
if (r>=hl_x_min and r<hl_x_max) and (c<hl_y_max and c>=hl_y_min):
continue
else:
ax.add_patch(Rectangle((r, c), 1, 1, fill=True, color = 'gray', edgecolor=None, lw=0, alpha=alphaval));
m_index +=1
#plt.tight_layout();
plt.show()
fig.savefig("pcmesh.pdf")
希望这是可以理解的,我试图搜索这个问题,我已经阅读了大量的东西,但我找不到任何东西......