3

我每天有一条公交线路的数据集,其中有 32 辆公交车和两辆公交车route_direction(0,1),在第一个方向有 18 个车站,每个车站有一个从 1 到 18 的序列,另一个方向有 15 个带有 seq(1-15) 的车站并记录时间进入/退出每个车站。每条记录包含 bus_id、route_direction、station_seq、in_time、out_time、station_id。 在此处输入图像描述

route_id    route_direction bus_id  station_seq schdeule_date   in_time out_time

0   59  1   1349508393  2   2021-01-01  05:04:31    05:04:58

1   59  1   1349508393  2   2021-01-01  05:04:27    05:04:58

2   59  1   1349508393  2   2021-01-01  05:04:31    05:06:31

3   59  1   1349508393  2   2021-01-01  05:04:27    05:06:31

4   59  1   1349508393  1   2021-01-01  05:00:35    05:00:56

首先,我尝试对某个列进行分组,以便为​​每次旅行提供索引:

grouped = df.groupby(['bus_id', 'route_direction'])

我在这张图片中得到类似的东西 在此处输入图片描述

index   route_id    route_direction bus_id  station_seq schdeule_date   in_time out_time

654 59  0   1349508329  1   2021-01-01  NaN 06:34:10

663 59  0   1349508329  2   2021-01-01  06:33:34    06:34:04

664 59  0   1349508329  2   2021-01-01  06:33:33    06:34:04

677 59  0   1349508329  2   2021-01-01  06:33:34    06:35:34

678 59  0   1349508329  2   2021-01-01  06:33:33    06:35:34

... ... ... ... ... ... ... ...

12133   59  0   1349508329  12  2021-01-01  NaN NaN

正如您所看到的,在几乎相同的日期和时间,同一个车站也有相同的 bus_id 进入出口的重复项:我尝试过删除重复项,但运气不好:

df = df.drop_duplicates(subset=['bus_id', 'route_direction', 'station_seq', 'station_id', 'in_time'], keep='first').reset_index(drop=True)

在 in_time 或 out_time 中也有一些 NaN 值,所以如果我 dropna ,那么我可能会错过公交线路沿线车站之一的记录。

在一次旅行中对每条巴士记录进行分组以赋予其 ID 有什么帮助,在这种情况下如何删除重复的记录(进入时间略有不同)?任何帮助将不胜感激。

4

1 回答 1

1
  1. 带有 'bus_id' 和 'in_time' 的 sort_values
  2. groupby 'bus_id',对于每个 bus_id,计算每个记录与它的前一个记录的时间差异
  3. 如果 time-diff 小于 60s,则标记为 0,否则标记为 1,以便设置某些组忽略 time-diff < 60s
  4. 在标签上使用cumsum,创建组标签
  5. groupby grouptag,对于每个 grouptag 保持 min(in_time) 和 max(out_time)
# convert the in_time to dateTime first, then sorted the values
df['in_time_t'] = pd.to_datetime(df['schdeule_date'] + ' ' + df['in_time'])
df.sort_values(['bus_id', 'in_time_t'], inplace=True)

# calculate the time difference for every bus_id
df['t_diff'] = df.groupby('bus_id')['in_time_t'].diff()

# set group_tag
cond = df['t_diff'].dt.seconds < 60
df['tag'] = np.where(cond, 0, 1).cumsum()

# for every grouptag keep min(in_time) and max(out_time)
df_result = df.groupby(['route_id', 'route_direction', 'bus_id', 'station_seq', 'schdeule_date',
       'tag']).agg({'in_time':'min', 'out_time':'max'}).reset_index()
df
        route_id    route_direction bus_id  station_seq schdeule_date   in_time out_time
    0   59  1   1349508393  2   2021-01-01  05:04:31    05:04:58
    1   59  1   1349508393  2   2021-01-01  05:04:27    05:04:58
    2   59  1   1349508393  2   2021-01-01  05:04:31    05:06:31
    3   59  1   1349508393  2   2021-01-01  05:04:27    05:06:31
    4   59  1   1349508393  1   2021-01-01  05:00:35    05:00:56
    654 59  0   1349508329  1   2021-01-01  NaN 06:34:10
    663 59  0   1349508329  2   2021-01-01  06:33:34    06:34:04
    664 59  0   1349508329  2   2021-01-01  06:33:33    06:34:04
    677 59  0   1349508329  2   2021-01-01  06:33:34    06:35:34
    678 59  0   1349508329  2   2021-01-01  06:33:33    06:35:34
    12133   59  0   1349508329  12  2021-01-01  NaN NaN

df_result
        route_id    route_direction bus_id  station_seq schdeule_date   tag in_time out_time
    0   59  0   1349508329  1   2021-01-01  2   NaN 06:34:10
    1   59  0   1349508329  2   2021-01-01  1   06:33:33    06:35:34
    2   59  0   1349508329  12  2021-01-01  3   NaN NaN
    3   59  1   1349508393  1   2021-01-01  4   05:00:35    05:00:56
    4   59  1   1349508393  2   2021-01-01  5   05:04:27    05:06:31

df with tag
|       |   route_id |   route_direction |     bus_id |   station_seq | schdeule_date   | in_time   | out_time   | in_time_t           | t_diff          |   tag |
|------:|-----------:|------------------:|-----------:|--------------:|:----------------|:----------|:-----------|:--------------------|:----------------|------:|
|   664 |         59 |                 0 | 1349508329 |             2 | 2021-01-01      | 06:33:33  | 06:34:04   | 2021-01-01 06:33:33 | NaT             |     1 |
|   678 |         59 |                 0 | 1349508329 |             2 | 2021-01-01      | 06:33:33  | 06:35:34   | 2021-01-01 06:33:33 | 0 days 00:00:00 |     1 |
|   663 |         59 |                 0 | 1349508329 |             2 | 2021-01-01      | 06:33:34  | 06:34:04   | 2021-01-01 06:33:34 | 0 days 00:00:01 |     1 |
|   677 |         59 |                 0 | 1349508329 |             2 | 2021-01-01      | 06:33:34  | 06:35:34   | 2021-01-01 06:33:34 | 0 days 00:00:00 |     1 |
|   654 |         59 |                 0 | 1349508329 |             1 | 2021-01-01      | nan       | 06:34:10   | NaT                 | NaT             |     2 |
| 12133 |         59 |                 0 | 1349508329 |            12 | 2021-01-01      | nan       | nan        | NaT                 | NaT             |     3 |
|     4 |         59 |                 1 | 1349508393 |             1 | 2021-01-01      | 05:00:35  | 05:00:56   | 2021-01-01 05:00:35 | NaT             |     4 |
|     1 |         59 |                 1 | 1349508393 |             2 | 2021-01-01      | 05:04:27  | 05:04:58   | 2021-01-01 05:04:27 | 0 days 00:03:52 |     5 |
|     3 |         59 |                 1 | 1349508393 |             2 | 2021-01-01      | 05:04:27  | 05:06:31   | 2021-01-01 05:04:27 | 0 days 00:00:00 |     5 |
|     0 |         59 |                 1 | 1349508393 |             2 | 2021-01-01      | 05:04:31  | 05:04:58   | 2021-01-01 05:04:31 | 0 days 00:00:04 |     5 |
|     2 |         59 |                 1 | 1349508393 |             2 | 2021-01-01      | 05:04:31  | 05:06:31   | 2021-01-01 05:04:31 | 0 days 00:00:00 |     5 |

于 2021-02-02T02:30:55.353 回答