我对 OpenCV 很陌生,正在尝试使用网络摄像头沿着我的手部轮廓绘制简单的轮廓。当相机适应手的移动时,我决定使用它cv2.adaptiveThreshold()
来处理不同的光强度。一切似乎都很好,除了它正在努力寻找手指然后还要绘制闭合轮廓。看这里:
我想过尝试检测一个凸包并以某种方式检测任何偏离它的东西。
我怎样才能做到最好?首先,我需要设法找到奇怪的闭合轮廓,然后从那里开始?
这是代码,我为您修复了轨迹栏值:)
import cv2
import numpy as np
#####################################
winWidth = 640
winHeight = 840
brightness = 100
cap = cv2.VideoCapture(0)
cap.set(3, winWidth)
cap.set(4, winHeight)
cap.set(10, brightness)
kernel = (7, 7)
#######################################################################
def empty(a):
pass
cv2.namedWindow("TrackBars")
cv2.resizeWindow("TrackBars", 640, 240)
cv2.createTrackbar("cVal", "TrackBars", 10, 40, empty)
cv2.createTrackbar("bSize", "TrackBars", 77, 154, empty)
def preprocessing(frame, value_BSize, cVal):
imgGray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# mask = cv2.inRange(imgHsv, lower, upper)
imgBlurred = cv2.GaussianBlur(imgGray, kernel, 4)
gaussC = cv2.adaptiveThreshold(imgBlurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, value_BSize,
cVal)
imgDial = cv2.dilate(gaussC, kernel, iterations=3)
imgErode = cv2.erode(imgDial, kernel, iterations=1)
return imgDial
def getContours(imPrePro):
contours, hierarchy = cv2.findContours(imPrePro, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 60:
cv2.drawContours(imgCon, cnt, -1, (0, 255, 0), 2, cv2.FONT_HERSHEY_SIMPLEX)
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
#######################################################################################################
while cap.isOpened():
success, frame = cap.read()
cVal = cv2.getTrackbarPos("cVal", "TrackBars")
bVal = cv2.getTrackbarPos("bVal", "TrackBars")
value_BSize = cv2.getTrackbarPos("bSize", "TrackBars")
value_BSize = max(3, value_BSize)
if (value_BSize % 2 == 0):
value_BSize += 1
if success == True:
frame = cv2.flip(frame, 1)
imgCon = frame.copy()
imPrePro = preprocessing(frame, value_BSize, cVal)
getContours(imPrePro)
cv2.imshow("Preprocessed", imPrePro)
cv2.imshow("Original", imgCon)
if cv2.waitKey(1) & 0xFF == ord("q"):
cv2.destroyAllWindows()
break