2

我想从时间序列索引中提取年份(基础时间序列是每月频率)。我想这样做的原因是创建一个年度轴。

我正在使用一个包 Rbeast。

这是我对 tsp(NDVI_Chobe001.ts) [1] 2002.500 2020.417 12.000 的结果

##这里有更详细的时间序列

 time(NDVI_Chobe001.ts)
          Jan      Feb      Mar      Apr      May      Jun      Jul      Aug      Sep
2002                                                       2002.500 2002.583 2002.667
2003 2003.000 2003.083 2003.167 2003.250 2003.333 2003.417 2003.500 2003.583 2003.667
2004 2004.000 2004.083 2004.167 2004.250 2004.333 2004.417 2004.500 2004.583 2004.667
2005 2005.000 2005.083 2005.167 2005.250 2005.333 2005.417 2005.500 2005.583 2005.667
2006 2006.000 2006.083 2006.167 2006.250 2006.333 2006.417 2006.500 2006.583 2006.667
2007 2007.000 2007.083 2007.167 2007.250 2007.333 2007.417 2007.500 2007.583 2007.667
2008 2008.000 2008.083 2008.167 2008.250 2008.333 2008.417 2008.500 2008.583 2008.667
2009 2009.000 2009.083 2009.167 2009.250 2009.333 2009.417 2009.500 2009.583 2009.667
2010 2010.000 2010.083 2010.167 2010.250 2010.333 2010.417 2010.500 2010.583 2010.667
2011 2011.000 2011.083 2011.167 2011.250 2011.333 2011.417 2011.500 2011.583 2011.667
2012 2012.000 2012.083 2012.167 2012.250 2012.333 2012.417 2012.500 2012.583 2012.667
2013 2013.000 2013.083 2013.167 2013.250 2013.333 2013.417 2013.500 2013.583 2013.667
2014 2014.000 2014.083 2014.167 2014.250 2014.333 2014.417 2014.500 2014.583 2014.667
2015 2015.000 2015.083 2015.167 2015.250 2015.333 2015.417 2015.500 2015.583 2015.667
2016 2016.000 2016.083 2016.167 2016.250 2016.333 2016.417 2016.500 2016.583 2016.667
2017 2017.000 2017.083 2017.167 2017.250 2017.333 2017.417 2017.500 2017.583 2017.667
2018 2018.000 2018.083 2018.167 2018.250 2018.333 2018.417 2018.500 2018.583 2018.667
2019 2019.000 2019.083 2019.167 2019.250 2019.333 2019.417 2019.500 2019.583 2019.667
2020 2020.000 2020.083 2020.167 2020.250 2020.333 2020.417                           
          Oct      Nov      Dec
2002 2002.750 2002.833 2002.917
2003 2003.750 2003.833 2003.917
2004 2004.750 2004.833 2004.917
2005 2005.750 2005.833 2005.917
2006 2006.750 2006.833 2006.917
2007 2007.750 2007.833 2007.917
2008 2008.750 2008.833 2008.917
2009 2009.750 2009.833 2009.917
2010 2010.750 2010.833 2010.917
2011 2011.750 2011.833 2011.917
2012 2012.750 2012.833 2012.917
2013 2013.750 2013.833 2013.917
2014 2014.750 2014.833 2014.917
2015 2015.750 2015.833 2015.917
2016 2016.750 2016.833 2016.917
2017 2017.750 2017.833 2017.917
2018 2018.750 2018.833 2018.917
2019 2019.750 2019.833 2019.917
2020                     

##这里是dput结果这也是时间序列的dput结果

dput(NDVI_Chobe001.ts)
structure(c(0.258672185, 0.237639041, 0.223988035, 0.22397988, 
0.28132144, 0.387710909, 0.556186453, 0.719580311, 0.443294248, 
0.314433357, 0.292755672, 0.278023297, 0.246809774, 0.230477039, 
0.228955071, 0.234966762, 0.396659718, 0.491330645, 0.716274496, 
0.73417416, 0.576279481, 0.479403466, 0.423930923, 0.377550602, 
0.313801774, 0.297335261, 0.27886131, 0.285054814, 0.323942137, 
0.482912961, 0.544500134, 0.692623308, 0.512637643, 0.526592884, 
0.432898755, 0.331892323, 0.294543398, 0.274633904, 0.247602217, 
0.24889248, 0.268682448, 0.623132479, 0.732958587, 0.794572999, 
0.697092229, 0.588587711, 0.389213056, 0.348485514, 0.282932917, 
0.264831569, 0.254937301, 0.277647575, 0.342873991, 0.450392312, 
0.631838679, 0.716638566, 0.508704542, 0.423229761, 0.324663042, 
0.321186864, 0.295935102, 0.255618784, 0.257619908, 0.27254904, 
0.270580191, 0.432220414, 0.585539863, 0.716581759, 0.593955107, 
0.559614127, 0.388112159, 0.386833323, 0.323056858, 0.296201373, 
0.299547175, 0.340499135, 0.487932489, 0.531619232, 0.755898976, 
0.630418376, 0.624101053, 0.46624194, 0.407831925, 0.396696504, 
0.348860597, 0.311130303, 0.301932775, 0.359536613, 0.389388896, 
0.639178419, 0.693073002, 0.544238686, 0.608043068, 0.520223438, 
0.489590537, 0.371915235, 0.322345492, 0.285747424, 0.262060636, 
0.290601893, 0.272739968, 0.465184219, 0.597999142, 0.58280379, 
0.498312536, 0.351555151, 0.313456794, 0.30176279, 0.272389062, 
0.256200802, 0.257570355, 0.261360949, 0.280664516, 0.472871998, 
0.635346196, 0.809469884, 0.708410897, 0.454619991, 0.374153554, 
0.31216354, 0.277643235, 0.273912332, 0.279202729, 0.274954368, 
0.3220379, 0.66542086, 0.786922135, 0.749038686, 0.494324261, 
0.380828443, 0.31699487, 0.293321759, 0.275010923, 0.263032267, 
0.254334753, 0.270928799, 0.319622211, 0.699834174, 0.733615599, 
0.743950233, 0.701439492, 0.514223884, 0.414668945, 0.353937354, 
0.304874948, 0.263697644, 0.25397833, 0.270116643, 0.310931558, 
0.529621168, 0.769325391, 0.676328487, 0.561630209, 0.550257129, 
0.408412794, 0.362071348, 0.294350827, 0.271100888, 0.26194204, 
0.265314367, 0.311826075, 0.556399621, 0.586507353, 0.715697274, 
0.71326184, 0.554275685, 0.423167172, 0.332214247, 0.316422341, 
0.264796933, 0.253106015, 0.274547234, 0.274233387, 0.331729551, 
0.568674796, 0.678751599, 0.651238604, 0.550351642, 0.50121297, 
0.39598441, 0.373748125, 0.342521719, 0.308862893, 0.368914514, 
0.346751371, 0.590197072, 0.550842239, 0.641805925, 0.73276961, 
0.616976479, 0.501595155, 0.441702349, 0.420716154, 0.297677153, 
0.302351869, 0.347572841, 0.347128221, 0.488411226, 0.739632011, 
0.773688839, 0.527578039, 0.531276077, 0.481584383, 0.450086834, 
0.331415825, 0.298545112, 0.281891087, 0.301013691, 0.334150401, 
0.537372378, 0.756594273, 0.778707894, 0.728867792, 0.634829201, 
0.415475576, 0.353712963), .Tsp = c(2002.5, 2020.41666666667, 
12), class = "ts")

这是我的代码

#这里我明确指定选项参数 opt=list() #创建一个空列表来附加单个模型参数

    opt$period=12           #Period of the cyclic/seasonal component of the modis time series
    opt$startTime=2002.500000   ##specify start time
    
    

在这里我正在绘制数据

    out=beast(NDVI_Chobe001.ts, opt)
    p<-plot(out)
    

但是,情节时间序列是每月频率,请参见此处的示例[在此处输入图像描述][1]

##现在我从时间序列中提取年份以在绘图时使用

    time <- as.yearmon( time(NDVI_Chobe001.ts))
    time<-format.Date(x,"%Y")
    
    plot(out,axis(1,time, labels = TRUE))
    

但这不起作用,它仍然按月频率显示,我如何按年分配我的时间序列?

      [1]: https://i.stack.imgur.com/VNxJC.jpg
4

2 回答 2

1

我知道这个问题很老,我迟到的答复可能无关紧要。无论如何,在旧版本的 中Rbeast,如果给定ts输入,该beast函数仅使用其数据向量而不是时间标签信息(即 .tsp 属性,例如startfrequency)。换句话说,时间信息必须额外提供给beast; 如果不是,则将索引1:N用作默认时间。在最新版本 ( Rbeast v0.9.2) 中,我稍微更改了 API;现在beast可以处理ts对象的时间标签。

下面是使用您的样本数据进行时间序列分解和变化点检测的测试。

ndvi= c( 0.258,0.237,0.223,0.223,0.281,0.387,0.556,0.719,0.443,0.314,0.292,0.278,0.246,0.230,0.228,0.234,0.396,0.491,0.716, 0.734,0.576,0.479,0.423,0.377,0.313,0.297,0.278,0.285,0.323,0.482,0.544,0.692,0.512,0.526,0.432,0.331,0.294,0.274,
     0.247,0.248,0.268,0.623,0.732,0.794,0.697,0.588,0.389,0.348,0.282,0.264,0.254,0.277,0.342,0.450,0.631,0.716,0.508, 0.423,0.324,0.321,0.295,0.255,0.257,0.272,0.270,0.432,0.585,0.716,0.593,0.559,0.388,0.386,0.323,0.296,0.299,0.340,
     0.487,0.531,0.755,0.630,0.624,0.466,0.407,0.396,0.348,0.311,0.301,0.359,0.389,0.639,0.693,0.544,0.608,0.520,0.489, 0.371,0.322,0.285,0.262,0.290,0.272,0.465,0.597,0.582,0.498,0.351,0.313,0.301,0.272,0.256,0.257,0.261,0.280,0.472,
     0.635,0.809,0.708,0.454,0.374,0.312,0.277,0.273,0.279,0.274,0.322,0.665,0.786,0.749,0.494,0.380,0.316,0.293,0.275, 0.263,0.254,0.270,0.319,0.699,0.733,0.743,0.701,0.514,0.414,0.353,0.304,0.263,0.253,0.270,0.310,0.529,0.769,0.676,
     0.561,0.550,0.408,0.362,0.294,0.271,0.261,0.265,0.311,0.556,0.586,0.715,0.713,0.554,0.423,0.332,0.316,0.264,0.253, 0.274,0.274,0.331,0.568,0.678,0.651,0.550,0.501,0.395,0.373,0.342,0.308,0.368,0.346,0.590,0.550,0.641,0.732,0.616,
     0.501,0.441,0.420,0.297,0.302,0.347,0.347,0.488,0.739,0.773,0.527,0.531,0.481,0.450,0.331,0.298,0.281,0.301,0.334, 0.537,0.756,0.778,0.728,0.634,0.415,0.353)

ndvi是一个数据向量;从中创建一个ts对象作为输入beast

ndvi_ts = ts(ndvi, start=2002.5, frequency = 12)

out = beast(ndvi_ts) 
plot(out)

# By default, seasonality is fitted as a harmonic curve; use SVD-based bases instead
out = beast(ndvi_ts, season='svd')
plot(out)

# If the input is a pure data vector, the time info has to be specified 
# via 'start', 'deltat' (delta T), and 'freq'; otherwise, default times 
# (i.e., 1:216) would be used.
out = beast( ndvi, start=2002.5, deltat=1/12, freq=12, season='svd')
plot(out)

脚本的示例输出

beast输出是类 'beast' 的对象LIST,不能直接用ggplot2. 上面的 plot 函数不是 R 自己的函数,而是 Rbeast 对 S3 方法的实现'plot.beast'。如果需要常规绘图,可以提取输出的各个变量以用于 R 的基础绘图或 ggplot2。下面是一个例子:

out=beast(ndvi_ts, season='svd')

# out is a LIST variable; extract some elements
t    = out$time            # time
y    = out$trend$Y         # fitted trend compnt
yci  = out$trend$CI[,,1]   # estimated 95% CI interval for trend
cp   = out$trend$cp        # most probable changepoints in trend 
ncp  = sum(!is.nan(cp))    # number of changepoints given in cp

ymax=max(yci)
ymin=min(yci)    
plot( x=c(min(t),max(t)), y=c(ymin,ymax), type='n', xlab='time', ylab='trend'  )
lines(t,y)
polygon( x=c(t,rev(t)), y=c( yci[,1], rev(yci[,2]) ) , col=rgb(0,1,0,.2),border=NA )

yrange=par('usr')[3:4]
for (i in 1:ncp) {
  lines( c(cp[i], cp[i] ), y=yrange, type='l', lty='dashed' )  
}

如果需要多个子图,一种方法是使用 R 的par(new=TRUE)选项,如下所示。

t    = out$time            # time
y    = out$trend$Y         # fitted trend compnt
yci  = out$trend$CI[,,1]   # estimated 95% CI interval for trend
cp   = out$trend$cp        # most probable changepoints in trend 
ncp  = sum(!is.nan(cp))    # number of changepoints given in cp
prob = out$trend$cpOccPr   # probability of changepoints occurrence over time

ymax=max(yci)
ymin=min(yci)

plot.new()

# FIRST PLOT: Fine-tune the four margin numbers in plt to re-position
par(plt = c(0.15, 1-0.01, 1-0.01-.5, 1-0.01-.5+0.4),new=TRUE) 

plot( x=c(min(t),max(t)), y=c(ymin,ymax), type='n', xaxt='n', xlab=NA,  ylab='trend')
lines( t, y )
polygon( x=c( t, rev(t) ), y=c( yci[,1], rev(yci[,2]) ) , col=rgb(0,1,0,.2),border=NA )

yrange=par('usr')[3:4]
for (i in 1:ncp) {
  lines( c(cp[i], cp[i] ), y=yrange, type='l', lty='dashed' )  
}

# SECOND PLOT: Fine-tune the four margin numbers in plt to re-position
par(plt = c(0.15, 1-0.01, 1-0.01-.5-0.3, 1-0.01-.5-0.3+0.3),new=TRUE)
plot(  x=t, y=prob, type='l', xlab='time', ylab='Prob'  )
     

不确定这有多大用处。无论如何,感谢您的测试Rbeast。如果需要新功能,请告诉我。

于 2022-01-14T22:16:44.307 回答
0

我尝试的是这样的:

您的时间序列数据:

df <- structure(c(0.258672185, 0.237639041, 0.223988035, 0.22397988, 
                  0.28132144, 0.387710909, 0.556186453, 0.719580311, 0.443294248, 
                  0.314433357, 0.292755672, 0.278023297, 0.246809774, 0.230477039, 
                  0.228955071, 0.234966762, 0.396659718, 0.491330645, 0.716274496, 
                  0.73417416, 0.576279481, 0.479403466, 0.423930923, 0.377550602, 
                  0.313801774, 0.297335261, 0.27886131, 0.285054814, 0.323942137, 
                  0.482912961, 0.544500134, 0.692623308, 0.512637643, 0.526592884, 
                  0.432898755, 0.331892323, 0.294543398, 0.274633904, 0.247602217, 
                  0.24889248, 0.268682448, 0.623132479, 0.732958587, 0.794572999, 
                  0.697092229, 0.588587711, 0.389213056, 0.348485514, 0.282932917, 
                  0.264831569, 0.254937301, 0.277647575, 0.342873991, 0.450392312, 
                  0.631838679, 0.716638566, 0.508704542, 0.423229761, 0.324663042, 
                  0.321186864, 0.295935102, 0.255618784, 0.257619908, 0.27254904, 
                  0.270580191, 0.432220414, 0.585539863, 0.716581759, 0.593955107, 
                  0.559614127, 0.388112159, 0.386833323, 0.323056858, 0.296201373, 
                  0.299547175, 0.340499135, 0.487932489, 0.531619232, 0.755898976, 
                  0.630418376, 0.624101053, 0.46624194, 0.407831925, 0.396696504, 
                  0.348860597, 0.311130303, 0.301932775, 0.359536613, 0.389388896, 
                  0.639178419, 0.693073002, 0.544238686, 0.608043068, 0.520223438, 
                  0.489590537, 0.371915235, 0.322345492, 0.285747424, 0.262060636, 
                  0.290601893, 0.272739968, 0.465184219, 0.597999142, 0.58280379, 
                  0.498312536, 0.351555151, 0.313456794, 0.30176279, 0.272389062, 
                  0.256200802, 0.257570355, 0.261360949, 0.280664516, 0.472871998, 
                  0.635346196, 0.809469884, 0.708410897, 0.454619991, 0.374153554, 
                  0.31216354, 0.277643235, 0.273912332, 0.279202729, 0.274954368, 
                  0.3220379, 0.66542086, 0.786922135, 0.749038686, 0.494324261, 
                  0.380828443, 0.31699487, 0.293321759, 0.275010923, 0.263032267, 
                  0.254334753, 0.270928799, 0.319622211, 0.699834174, 0.733615599, 
                  0.743950233, 0.701439492, 0.514223884, 0.414668945, 0.353937354, 
                  0.304874948, 0.263697644, 0.25397833, 0.270116643, 0.310931558, 
                  0.529621168, 0.769325391, 0.676328487, 0.561630209, 0.550257129, 
                  0.408412794, 0.362071348, 0.294350827, 0.271100888, 0.26194204, 
                  0.265314367, 0.311826075, 0.556399621, 0.586507353, 0.715697274, 
                  0.71326184, 0.554275685, 0.423167172, 0.332214247, 0.316422341, 
                  0.264796933, 0.253106015, 0.274547234, 0.274233387, 0.331729551, 
                  0.568674796, 0.678751599, 0.651238604, 0.550351642, 0.50121297, 
                  0.39598441, 0.373748125, 0.342521719, 0.308862893, 0.368914514, 
                  0.346751371, 0.590197072, 0.550842239, 0.641805925, 0.73276961, 
                  0.616976479, 0.501595155, 0.441702349, 0.420716154, 0.297677153, 
                  0.302351869, 0.347572841, 0.347128221, 0.488411226, 0.739632011, 
                  0.773688839, 0.527578039, 0.531276077, 0.481584383, 0.450086834, 
                  0.331415825, 0.298545112, 0.281891087, 0.301013691, 0.334150401, 
                  0.537372378, 0.756594273, 0.778707894, 0.728867792, 0.634829201, 
                  0.415475576, 0.353712963), .Tsp = c(2002.5, 2020.41666666667, 
                                                      12), class = "ts")

创建具有适当日期的数据框:

# this will extract, convert and create a Date column from your data
df1 <- data.frame(as.matrix(df), date=time(df))
df1$year <- trunc(df1$date)
df1$month <- (df1$date - df1$year) * 12 + 1
df1$month <- as.integer(round(df1$month),0)
df1$Day <- 1
names(df1) <- c("Data", "Original_Date", "Year", "Month", "Day")
df1$Date <- paste(df1$Year, df1$Month, df1$Day, sep="-")

如果一切正常,您可以查看:

# check the structure    
str(df1)

最后,绘制它:

# plot the data
library(ggplot2)
theme_set(theme_minimal())
ggplot(data = df1, aes(x = Date, y = Data)) + geom_line(color = "#00AFBB", size = 1)

近一点

plot(y=out$s, x=out$time, type='l')       #The same as plot(out$s[,1]): plot the seasonal curve
plot(y=out$sProb, x=out$time, type='l')   #Plot the probability of observing seasonal changepoints
plot(y=out$t, x=out$time, type='l')       #The same as plot(out$t[,1]): plot the trend
plot(y=out$sProb, x=out$time, type='l')   #Plot the probability of observing trend changepoints11
于 2021-02-02T14:16:02.440 回答