我正在尝试创建 Azure DEVOPS ML 管道。以下代码在 Jupyter Notebooks 上可以 100% 正常运行,但是当我在 Azure Devops 中运行它时,我得到了这个错误:
Traceback (most recent call last):
File "src/my_custom_package/data.py", line 26, in <module>
ws = Workspace.from_config()
File "/opt/hostedtoolcache/Python/3.8.7/x64/lib/python3.8/site-packages/azureml/core/workspace.py", line 258, in from_config
raise UserErrorException('We could not find config.json in: {} or in its parent directories. '
azureml.exceptions._azureml_exception.UserErrorException: UserErrorException:
Message: We could not find config.json in: /home/vsts/work/1/s or in its parent directories. Please provide the full path to the config file or ensure that config.json exists in the parent directories.
InnerException None
ErrorResponse
{
"error": {
"code": "UserError",
"message": "We could not find config.json in: /home/vsts/work/1/s or in its parent directories. Please provide the full path to the config file or ensure that config.json exists in the parent directories."
}
}
代码是:
#import
from sklearn.model_selection import train_test_split
from azureml.core.workspace import Workspace
from azureml.train.automl import AutoMLConfig
from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException
from azureml.core.experiment import Experiment
from datetime import date
from azureml.core import Workspace, Dataset
import pandas as pd
import numpy as np
import logging
#getdata
subscription_id = 'mysubid'
resource_group = 'myrg'
workspace_name = 'mlplayground'
workspace = Workspace(subscription_id, resource_group, workspace_name)
dataset = Dataset.get_by_name(workspace, name='correctData')
#auto ml
ws = Workspace.from_config()
automl_settings = {
"iteration_timeout_minutes": 2880,
"experiment_timeout_hours": 48,
"enable_early_stopping": True,
"primary_metric": 'spearman_correlation',
"featurization": 'auto',
"verbosity": logging.INFO,
"n_cross_validations": 5,
"max_concurrent_iterations": 4,
"max_cores_per_iteration": -1,
}
cpu_cluster_name = "computecluster"
compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)
print(compute_target)
automl_config = AutoMLConfig(task='regression',
compute_target = compute_target,
debug_log='automated_ml_errors.log',
training_data = dataset,
label_column_name="paidInDays",
**automl_settings)
today = date.today()
d4 = today.strftime("%b-%d-%Y")
experiment = Experiment(ws, "myexperiment"+d4)
remote_run = experiment.submit(automl_config, show_output = True)
from azureml.widgets import RunDetails
RunDetails(remote_run).show()
remote_run.wait_for_completion()