2

我使用 DCGAN 来合成医学图像(512*512)。然而,目前,DCGAN 太不稳定了。因此,我正在尝试将我的 DCGAN 网络更改为 WGAN。

这个链接是我的 DCGAN 网络的原始代码。

如何在 DCGAN 中增加 image_size

数据和参数

# Root directory for dataset


dataroot = f"./processed/{grade}/{grade}/"

# Number of workers for dataloader
workers = 4

# Batch size during training
batch_size = 128

# Spatial size of training images. All images will be resized to this
#   size using a transformer.
image_size = 512

# Number of channels in the training images. For color images this is 3
nc = 3

# Size of z latent vector (i.e. size of generator input)
nz = 100

# Size of feature maps in generator
ngf = 16

# Size of feature maps in discriminator
ndf = 16

# Number of training epochs
num_epochs = 500

# Learning rate for optimizers
lr = 0.0002

# Beta1 hyperparam for Adam optimizers
beta1 = 0.5

# Number of GPUs available. Use 0 for CPU mode.
ngpu = 2

# WGAN clip gradient
clamp_num=0.01

我改变了 weight_init()

def weight_init(m):
# weight_initialization: important for wgan
class_name=m.__class__.__name__
if class_name.find('Conv')!=-1:
    m.weight.data.normal_(0,0.02)
elif class_name.find('Norm')!=-1:
    m.weight.data.normal_(1.0,0.02)

变化生成器

class Generator(nn.Module):
def __init__(self, ngpu):
    super(Generator, self).__init__()
    self.ngpu = ngpu
    self.main = nn.Sequential(
        # input is Z, going into a convolution
        nn.ConvTranspose2d(nz, ngf * 64, 4, 1, 0, bias=False),
        nn.BatchNorm2d(ngf * 64),
        nn.ReLU(True),
        # state size. (ngf*64) x 4 x 4
        nn.ConvTranspose2d(ngf * 64, ngf * 32, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ngf * 32),
        nn.ReLU(True),
        # state size. (ngf*32) x 8 x 8
        nn.ConvTranspose2d(ngf * 32, ngf * 16, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ngf * 16),
        nn.ReLU(True),
        # state size. (ngf*16) x 16 x 16
        nn.ConvTranspose2d(ngf * 16, ngf * 8, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ngf * 8),
        nn.ReLU(True),
        # state size. (ngf*8) x 32 x 32
        nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ngf * 4),
        nn.ReLU(True),
        # state size. (ngf*4) x 64 x 64
        nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ngf * 2),
        nn.ReLU(True),
        # state size. (ngf*2) x 128 x 128
        nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ngf),
        nn.ReLU(True),
        # state size. (ngf) x 256 x 256
        nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
        nn.Tanh()
        # state size. (nc) x 512 x 512
    )

def forward(self, x):
    return self.main(x)

和鉴别器

class Discriminator(nn.Module):
def __init__(self, ngpu):
    super(Discriminator, self).__init__()
    self.ngpu = ngpu
    self.main = nn.Sequential(
        # input is (nc) x 512 x 512
        nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
        nn.LeakyReLU(0.2, inplace=True),
        # state size. (ndf) x 256 x 256
        nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ndf * 2),
        nn.LeakyReLU(0.2, inplace=True),
        # state size. (ndf*2) x 128 x 128
        nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ndf * 4),
        nn.LeakyReLU(0.2, inplace=True),
        # state size. (ndf*4) x 64 x 64
        nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ndf * 8),
        nn.LeakyReLU(0.2, inplace=True),
        # state size. (ndf*8) x 32 x 32
        nn.Conv2d(ndf * 8, ndf * 16, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ndf * 16),
        nn.LeakyReLU(0.2, inplace=True),
        # state size. (ndf*16) x 16 x 16
        nn.Conv2d(ndf * 16, ndf * 32, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ndf * 32),
        nn.LeakyReLU(0.2, inplace=True),
        # state size. (ndf*32) x 8 x 8
        nn.Conv2d(ndf * 32, ndf * 64, 4, 2, 1, bias=False),
        nn.BatchNorm2d(ndf * 64),
        nn.LeakyReLU(0.2, inplace=True),
        # state size. (ndf*64) x 4 x 4
        nn.Conv2d(ndf * 64, 1, 4, 1, 0, bias=False),
        # Modification 1: remove sigmoid
        # nn.Sigmoid()
    )

def forward(self, x):
    return self.main(x)

此外,更改优化器

from torch.optim import RMSprop

# modification 2: Use RMSprop instead of Adam
optimizerD = RMSprop(netD.parameters(),lr=lr ) 
optimizerG = RMSprop(netG.parameters(),lr=lr )  

# modification3: No Log in loss
# criterion = nn.BCELoss()

# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)

# Establish convention for real and fake labels during training
real_label = 1
fake_label = 0

最后,训练代码如下。我猜培训代码有问题。(另外,我没有更改打印部分的任何内容)我希望有人可以帮助我如何更改训练代码以在这个意义上运行 WGAN。

# Training Loop
one=torch.FloatTensor([1]).cuda()
mone=-1*one.cuda()
# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0
num_epochs = 1000
print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
    # For each batch in the dataloader
    for i, data in enumerate(dataloader, 0):
        
        for parm in netD.parameters():
            parm.data.clamp_(clamp_num,clamp_num)
        
        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
        ## Train with all-real batch
        #print(epoch)
        
        netD.zero_grad()
        # Format batch
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, device=device).float()
        #print(real_cpu.shape)
        
        output = netD(real_cpu).view(-1).float()
        # Calculate loss on all-real batc
        output.backward(one)
        
        
        # Calculate gradients for D in backward pass
        D_x = output.mean().item()

        ## Train with all-fake batch
        # Generate batch of latent vectors
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        # Generate fake image batch with G
        fake = netG(noise)
        label.fill_(fake_label)
        #print(fake.detach())
        # Classify all fake batch with D
        output2 = netD(fake.detach()).view(-1).float()
        # Calculate D's loss on the all-fake batch
        output2.backward(mone)
        
        
        # Calculate the gradients for this batch
        D_G_z1 = output.mean().item()
        # Add the gradients from the all-real and all-fake batches
        # Update D
        optimizerD.step()

        ############################
        # (2) Update G network: maximize log(D(G(z)))
        ###########################
        netG.zero_grad()
        label.fill_(real_label)  # fake labels are real for generator cost
        # Since we just updated D, perform another forward pass of all-fake batch through D
        output2 = netD(fake.detach()).view(-1).float()

        #output = netD(fake).view(-1)
        # Calculate G's loss based on this output
        #errG = criterion(output, label)
        # Calculate gradients for G
        output2.backward()
        D_G_z2 = output2.mean().item()
        # Update G
        optimizerG.step()
        
        # Output training stats
        if i % 1000 == 0:
            
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
            
        # Save Losses for plotting later
        G_losses.append(errG.item())
        D_losses.append(errD.item())
        
        # Check how the generator is doing by saving G's output on fixed_noise
        if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(utils.make_grid(fake, padding=0, normalize=True))
            
        iters += 1
4

0 回答 0