0

我正在使用 NMF 模型进行主题建模。我想通过混淆矩阵来评估它的性能,或者如果有其他更好的方法来评估 NMF,我也可以。我试图在互联网上查找教程或其他资源,但找不到任何可以帮助我解决问题的东西。下面是我用于 NMF 主题建模的完整代码。

import pandas as pd
import numpy as np

dataset = pd.read_csv(r'Preprocess_Data.csv')
dataset = reviews_datasets.head(20000)
dataset.dropna()

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import metrics

tfidf_vect = TfidfVectorizer(max_df=0.8, min_df=2, stop_words='english')
doc_term_matrix = tfidf_vect.fit_transform(dataset['Text'].values.astype('U'))


from sklearn.decomposition import NMF

nmf = NMF(n_components=5, random_state=42)
nmf.fit(doc_term_matrix)

import random

for i in range(10):
    random_id = random.randint(0,len(tfidf_vect.get_feature_names()))
    print(tfidf_vect.get_feature_names()[random_id])

first_topic = nmf.components_[0]
top_topic_words = first_topic.argsort()[-10:]


for i in top_topic_words:
    print(tfidf_vect.get_feature_names()[I])

for i,topic in enumerate(nmf.components_):
    print(f'Top 10 words for topic #{i}:')
    print([tfidf_vect.get_feature_names()[i] for i in topic.argsort()[-10:]])
    print('\n')

提前感谢您的建议和意见。

4

1 回答 1

0

如果您有与文档关联的标签,那么您可以使用主题-文档表示作为文档特征来训练分类器,并在测试集的主题-文档表示上进行测试。

否则,您需要坚持无监督的指标,例如最著名的是主题连贯性,它衡量主题的前 N ​​个单词的相关程度。

您可以在这里找到所有这些措施和许多其他措施:https ://github.com/mind-Lab/octis#available-metrics

于 2021-05-03T18:58:22.140 回答