我正在尝试np.load()
使用tf.data
管道从 .npy 文件中读取我的 X 和 y 数据。但是如果我打电话会得到以下错误model.fit()
。有人解决这个问题吗?我想我必须将 X_data 和 y_data 的形状赋予tf.py_funciton
. 我正在使用 TensorFlow 2.4
错误:
Input 0 of layer sequential_13 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: (None, None)
描述:
train_filenames,train_label_filenames
是包含每个 .npy 文件的文件路径的列表。
所以那个print(train_filenames[0])
节目是'E:\UserData\Mustermann\02_Data\X_Data\Sample0.npy'
_np.load(train_filenames[0]).shape
(12, 8002)
np.load(label_filenames[0]).reshape(-1,1).shape
(1, 1)
所以一个样本有 12 个时间步长和 8002 个特征。
代码:
def load_files_py(train_filenames, train_label_filenames):
X_data = np.load(train_filenames)
label = np.load(train_label_filenames).reshape(-1,1)
return X_data, label, X_data.shape, label.shape
def parse_function(train_filenames, train_label_filenames):
temp = tf.py_function(load_files_py, inp=[train_filenames, train_label_filenames], Tout=[tf.float32, tf.float32, tf.int32, tf.int32])
X_data = tf.reshape(temp[0], [temp[2]])
label = tf.reshape(temp[1], [temp[3]])
return X_data, label
batch_size = 64
train_dataset = tf.data.Dataset.from_tensor_slices((train_filenames,train_label_filenames))
train_dataset = train_dataset.shuffle(len(train_filenames))
train_dataset = train_dataset.map(parse_function, num_parallel_calls=2)
train_dataset = train_dataset.batch(batch_size)
train_dataset = train_dataset.prefetch(1)
test_dataset = tf.data.Dataset.from_tensor_slices((test_filenames,test_label_filenames))
test_dataset = test_dataset.shuffle(len(test_filenames))
test_dataset = test_dataset.map(parse_function, num_parallel_calls=2)
test_dataset = test_dataset.batch(batch_size)
test_dataset = test_dataset.prefetch(1)
model = tf.keras.models.Sequential([
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(16, input_shape = (12, 8002), return_sequences=True)),
tf.keras.layers.LSTM(16),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(4, activation='relu'),
tf.keras.layers.Dense(1, activation = 'linear')
])
model.compile(optimizer='adam', loss='mse')
EPOCHS =300
early = tf.keras.callbacks.EarlyStopping('val_loss', patience=20)
history = model.fit(train_dataset,
epochs=EPOCHS,
validation_data = test_dataset)