0

我有一个数据集,可以测量来自多个样本站点的大型无脊椎动物的丰度。我希望将最近几年的抽样结果与同一地点所有前几年的抽样结果进行比较。

我的数据如下所示:

# A tibble: 6 x 5
  basin                sitecode sampleid metric       value
  <fct>                <chr>       <int> <chr>        <dbl>
1 arctic coast islands HUSK1       13482 s_abundance1  5312
2 arctic coast islands HUSK1       13482 s_abundance2    NA
3 arctic coast islands NOEL1       13488 s_abundance1   616
4 arctic coast islands NOEL1       13488 s_abundance2    NA
5 arctic coast islands RPR070       6815 s_abundance1    NA
6 arctic coast islands RPR070       6815 s_abundance2  697
> 

s_abundance1 代表最近站点的站点丰度,s_abundance2 代表先前采样站点的站点丰度

整个数据集大约有 4000 行,由许多不同流域的样本数据组成。

我想执行 mann-whitney u 测试,比较 s_abundance1 和 s_abundance2,但在单个输出中按盆地分组

我一直在使用的代码是:

abund_results %>%  
+     group_by(basin) %>%
+     summarise(tidy(wilcox.test(abund_results$value ~ abund_results$metric, data = .)))

它似乎有效,只是所有的 p 值都完全相同。这是输出:

abund_results %>%  
+     group_by(basin) %>%
+     summarise(tidy(wilcox.test(abund_results$value ~ abund_results$metric, data = .)))
`summarise()` ungrouping output (override with `.groups` argument)
# A tibble: 17 x 5
   basin                statistic   p.value method                                 alternative
   <fct>                    <dbl>     <dbl> <chr>                                  <chr>      
 1 arctic coast islands   181204. 5.82e-108 Wilcoxon rank sum test with continuit… two.sided  
 2 columbia               181204. 5.82e-108 Wilcoxon rank sum test with continuit… two.sided  
 3 fraser lower mainla…   181204. 5.82e-108 Wilcoxon rank sum test with continuit… two.sided  
 4 great lakes            181204. 5.82e-108 Wilcoxon rank sum test with continuit… two.sided  
 5 lower mackenzie        181204. 5.82e-108 Wilcoxon rank sum test with continuit… two.sided  
 6 lower saskatchewan-…   181204. 5.82e-108 Wilcoxon rank sum test with continuit… two.sided  
 7 maritime coastal       181204. 5.82e-108 Wilcoxon rank sum test with continuit… two.sided  

我需要更改哪些内容才能为每个盆地获得不同的结果?

4

0 回答 0