我看到了播种工作的行为。我运行了这个脚本:
import ray
from ray import tune
import numpy as np
import random
def training_function(config, data_init):
print('CONFIG:', config)
tune.report(end_of_training=1, acc=0, f=0)
if __name__ == '__main__':
# ray.init(num_cpus=12)
tune_config = {'sentence_classification': False,
'norm_word_emb': tune.choice(['True', 'False']),
'use_crf': tune.choice(['True', 'False']),
'use_char': tune.choice(['True', 'False']),
'word_seq_feature': tune.choice(['CNN', 'LSTM', 'GRU']),
'char_seq_feature': tune.choice(['CNN', 'LSTM', 'GRU']),
'seed': 1267}
data = {'a': 1}
tune_seed = tune_config['seed']
random.seed(tune_seed)
np.random.seed(tune_seed)
n_samples = 15
analysis = tune.run(
tune.with_parameters(training_function, data_init={'data': data}),
#name=exp_name,
metric="f",
mode="max",
queue_trials=True,
config=tune_config,
num_samples=n_samples,
resources_per_trial={"cpu": 1},
verbose=2,
max_failures=0,
)
我跑了一次:
Resources requested: 0/16 CPUs, 0/0 GPUs, 0.0/27.0 GiB heap, 0.0/9.28 GiB objects
Current best trial: 84b84_00014 with f=0 and parameters={'sentence_classification': False, 'norm_word_emb': 'False', 'use_crf': 'True', 'use_char': 'False', 'word_seq_feature': 'LSTM', 'char_seq_feature': 'GRU', 'seed': 1267}
Number of trials: 15/15 (15 TERMINATED)
+--------------------+------------+-------+--------------------+-----------------+------------+-----------+--------------------+--------+------------------+-------------------+-------+-----+
| Trial name | status | loc | char_seq_feature | norm_word_emb | use_char | use_crf | word_seq_feature | iter | total time (s) | end_of_training | acc | f |
|--------------------+------------+-------+--------------------+-----------------+------------+-----------+--------------------+--------+------------------+-------------------+-------+-----|
| _inner_84b84_00000 | TERMINATED | | LSTM | True | False | False | LSTM | 1 | 0.00149202 | 1 | 0 | 0 |
| _inner_84b84_00001 | TERMINATED | | CNN | False | True | False | CNN | 1 | 0.0014801 | 1 | 0 | 0 |
| _inner_84b84_00002 | TERMINATED | | GRU | False | False | True | GRU | 1 | 0.00152397 | 1 | 0 | 0 |
| _inner_84b84_00003 | TERMINATED | | GRU | False | False | False | GRU | 1 | 0.00165081 | 1 | 0 | 0 |
| _inner_84b84_00004 | TERMINATED | | CNN | False | False | False | CNN | 1 | 0.00173998 | 1 | 0 | 0 |
| _inner_84b84_00005 | TERMINATED | | LSTM | True | True | True | CNN | 1 | 0.00219083 | 1 | 0 | 0 |
| _inner_84b84_00006 | TERMINATED | | GRU | True | False | False | LSTM | 1 | 0.00192428 | 1 | 0 | 0 |
| _inner_84b84_00007 | TERMINATED | | LSTM | True | False | False | CNN | 1 | 0.00208902 | 1 | 0 | 0 |
| _inner_84b84_00008 | TERMINATED | | LSTM | True | True | True | GRU | 1 | 0.00146484 | 1 | 0 | 0 |
| _inner_84b84_00009 | TERMINATED | | CNN | False | False | True | CNN | 1 | 0.00152087 | 1 | 0 | 0 |
| _inner_84b84_00010 | TERMINATED | | LSTM | False | True | False | CNN | 1 | 0.00124121 | 1 | 0 | 0 |
| _inner_84b84_00011 | TERMINATED | | LSTM | True | True | True | CNN | 1 | 0.00124812 | 1 | 0 | 0 |
| _inner_84b84_00012 | TERMINATED | | LSTM | True | True | True | LSTM | 1 | 0.00133514 | 1 | 0 | 0 |
| _inner_84b84_00013 | TERMINATED | | LSTM | True | False | True | CNN | 1 | 0.00142407 | 1 | 0 | 0 |
| _inner_84b84_00014 | TERMINATED | | GRU | False | False | True | LSTM | 1 | 0.00120211 | 1 | 0 | 0 |
+--------------------+------------+-------+--------------------+-----------------+------------+-----------+--------------------+--------+------------------+-------------------+-------+-----+
以及随后的运行:
Current best trial: 84b84_00014 with f=0 and parameters={'sentence_classification': False, 'norm_word_emb': 'False', 'use_crf': 'True', 'use_char': 'False', 'word_seq_feature': 'LSTM', 'char_seq_feature': 'GRU', 'seed': 1267}
Result logdir: /Users/rliaw/ray_results/_inner_2021-01-07_10-45-31
Number of trials: 15/15 (15 TERMINATED)
+--------------------+------------+-------+--------------------+-----------------+------------+-----------+--------------------+--------+------------------+-------------------+-------+-----+
| Trial name | status | loc | char_seq_feature | norm_word_emb | use_char | use_crf | word_seq_feature | iter | total time (s) | end_of_training | acc | f |
|--------------------+------------+-------+--------------------+-----------------+------------+-----------+--------------------+--------+------------------+-------------------+-------+-----|
| _inner_84b84_00000 | TERMINATED | | LSTM | True | False | False | LSTM | 1 | 0.00149202 | 1 | 0 | 0 |
| _inner_84b84_00001 | TERMINATED | | CNN | False | True | False | CNN | 1 | 0.0014801 | 1 | 0 | 0 |
| _inner_84b84_00002 | TERMINATED | | GRU | False | False | True | GRU | 1 | 0.00152397 | 1 | 0 | 0 |
| _inner_84b84_00003 | TERMINATED | | GRU | False | False | False | GRU | 1 | 0.00165081 | 1 | 0 | 0 |
| _inner_84b84_00004 | TERMINATED | | CNN | False | False | False | CNN | 1 | 0.00173998 | 1 | 0 | 0 |
| _inner_84b84_00005 | TERMINATED | | LSTM | True | True | True | CNN | 1 | 0.00219083 | 1 | 0 | 0 |
| _inner_84b84_00006 | TERMINATED | | GRU | True | False | False | LSTM | 1 | 0.00192428 | 1 | 0 | 0 |
| _inner_84b84_00007 | TERMINATED | | LSTM | True | False | False | CNN | 1 | 0.00208902 | 1 | 0 | 0 |
| _inner_84b84_00008 | TERMINATED | | LSTM | True | True | True | GRU | 1 | 0.00146484 | 1 | 0 | 0 |
| _inner_84b84_00009 | TERMINATED | | CNN | False | False | True | CNN | 1 | 0.00152087 | 1 | 0 | 0 |
| _inner_84b84_00010 | TERMINATED | | LSTM | False | True | False | CNN | 1 | 0.00124121 | 1 | 0 | 0 |
| _inner_84b84_00011 | TERMINATED | | LSTM | True | True | True | CNN | 1 | 0.00124812 | 1 | 0 | 0 |
| _inner_84b84_00012 | TERMINATED | | LSTM | True | True | True | LSTM | 1 | 0.00133514 | 1 | 0 | 0 |
| _inner_84b84_00013 | TERMINATED | | LSTM | True | False | True | CNN | 1 | 0.00142407 | 1 | 0 | 0 |
| _inner_84b84_00014 | TERMINATED | | GRU | False | False | True | LSTM | 1 | 0.00120211 | 1 | 0 | 0 |
+--------------------+------------+-------+--------------------+-----------------+------------+-----------+--------------------+--------+------------------+-------------------+-------+-----+
请注意,试验及其配置完全相同(以相同的顺序)。