您可以创建一个主干模型并重用它以使用不同的输入层构建任意数量的模型,主干模型的参数对于您创建的所有新模型都将保持不变,如果您想要重置参数,请构建新的主干模型,示例代码在这里:
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
input_shape_b = (16, )
# Backbone model
def build_backbone_model():
inputs_b = layers.Input(shape=input_shape_b)
h = layers.Dense(256, 'relu')(inputs_b)
outputs_b = layers.Dense(1, 'sigmoid')(h)
return models.Model(inputs_b, outputs_b, name="Backbone")
backbone_model = build_backbone_model()
backbone_model.summary()
def new_model_reuse_backbone(input_shape, name):
inputs = layers.Input(shape=input_shape)
h = layers.Dense(input_shape_b[0], 'relu')(inputs)
outputs = backbone_model(h)
return models.Model(inputs, outputs, name=name)
# Will use backbone model we defined before
new_model_0 = new_model_reuse_backbone((32, ), "new_model_0")
new_model_0.summary()
# Rebuild will reset backbone model's parameters
backbone_model = build_backbone_model()
new_model_1 = new_model_reuse_backbone((256, ), "new_model_1")
new_model_1.summary()
输出:
Model: "Backbone"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 16)] 0
_________________________________________________________________
dense (Dense) (None, 256) 4352
_________________________________________________________________
dense_1 (Dense) (None, 1) 257
=================================================================
Total params: 4,609
Trainable params: 4,609
Non-trainable params: 0
_________________________________________________________________
Model: "new_model_0"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 32)] 0
_________________________________________________________________
dense_2 (Dense) (None, 16) 528
_________________________________________________________________
Backbone (Functional) (None, 1) 4609
=================================================================
Total params: 5,137
Trainable params: 5,137
Non-trainable params: 0
_________________________________________________________________
Model: "new_model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) [(None, 256)] 0
_________________________________________________________________
dense_3 (Dense) (None, 16) 4112
_________________________________________________________________
Backbone (Functional) (None, 1) 4609
=================================================================
Total params: 8,721
Trainable params: 8,721
Non-trainable params: 0
_________________________________________________________________