我正在寻找一种字符串相似性算法,它在可变长度字符串上产生比通常建议的更好的结果(levenshtein distance、soundex 等)。
例如,
给定字符串 A:“Robert”,
然后是字符串 B:“Amy Robertson”
会比
字符串 C:“理查德”
此外,最好该算法应该与语言无关(也适用于英语以外的语言)。
我正在寻找一种字符串相似性算法,它在可变长度字符串上产生比通常建议的更好的结果(levenshtein distance、soundex 等)。
例如,
给定字符串 A:“Robert”,
然后是字符串 B:“Amy Robertson”
会比
字符串 C:“理查德”
此外,最好该算法应该与语言无关(也适用于英语以外的语言)。
Catalysoft 的 Simon White 写了一篇关于比较相邻字符对的非常聪明的算法的文章,该算法非常适合我的目的:
http://www.catalysoft.com/articles/StrikeAMatch.html
Simon 有一个 Java 版本的算法,下面我写了一个 PL/Ruby 版本(取自 Mark Wong-VanHaren 在相关论坛条目评论中完成的普通 ruby 版本),以便我可以在我的 PostgreSQL 查询中使用它:
CREATE FUNCTION string_similarity(str1 varchar, str2 varchar)
RETURNS float8 AS '
str1.downcase!
pairs1 = (0..str1.length-2).collect {|i| str1[i,2]}.reject {
|pair| pair.include? " "}
str2.downcase!
pairs2 = (0..str2.length-2).collect {|i| str2[i,2]}.reject {
|pair| pair.include? " "}
union = pairs1.size + pairs2.size
intersection = 0
pairs1.each do |p1|
0.upto(pairs2.size-1) do |i|
if p1 == pairs2[i]
intersection += 1
pairs2.slice!(i)
break
end
end
end
(2.0 * intersection) / union
' LANGUAGE 'plruby';
奇迹般有效!
marzagao的回答很棒。我将它转换为 C#,所以我想我会把它贴在这里:
/// <summary>
/// This class implements string comparison algorithm
/// based on character pair similarity
/// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
/// </summary>
public class SimilarityTool
{
/// <summary>
/// Compares the two strings based on letter pair matches
/// </summary>
/// <param name="str1"></param>
/// <param name="str2"></param>
/// <returns>The percentage match from 0.0 to 1.0 where 1.0 is 100%</returns>
public double CompareStrings(string str1, string str2)
{
List<string> pairs1 = WordLetterPairs(str1.ToUpper());
List<string> pairs2 = WordLetterPairs(str2.ToUpper());
int intersection = 0;
int union = pairs1.Count + pairs2.Count;
for (int i = 0; i < pairs1.Count; i++)
{
for (int j = 0; j < pairs2.Count; j++)
{
if (pairs1[i] == pairs2[j])
{
intersection++;
pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success
break;
}
}
}
return (2.0 * intersection) / union;
}
/// <summary>
/// Gets all letter pairs for each
/// individual word in the string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private List<string> WordLetterPairs(string str)
{
List<string> AllPairs = new List<string>();
// Tokenize the string and put the tokens/words into an array
string[] Words = Regex.Split(str, @"\s");
// For each word
for (int w = 0; w < Words.Length; w++)
{
if (!string.IsNullOrEmpty(Words[w]))
{
// Find the pairs of characters
String[] PairsInWord = LetterPairs(Words[w]);
for (int p = 0; p < PairsInWord.Length; p++)
{
AllPairs.Add(PairsInWord[p]);
}
}
}
return AllPairs;
}
/// <summary>
/// Generates an array containing every
/// two consecutive letters in the input string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private string[] LetterPairs(string str)
{
int numPairs = str.Length - 1;
string[] pairs = new string[numPairs];
for (int i = 0; i < numPairs; i++)
{
pairs[i] = str.Substring(i, 2);
}
return pairs;
}
}
这是marzagao答案的另一个版本,这个是用Python编写的:
def get_bigrams(string):
"""
Take a string and return a list of bigrams.
"""
s = string.lower()
return [s[i:i+2] for i in list(range(len(s) - 1))]
def string_similarity(str1, str2):
"""
Perform bigram comparison between two strings
and return a percentage match in decimal form.
"""
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
union = len(pairs1) + len(pairs2)
hit_count = 0
for x in pairs1:
for y in pairs2:
if x == y:
hit_count += 1
break
return (2.0 * hit_count) / union
if __name__ == "__main__":
"""
Run a test using the example taken from:
http://www.catalysoft.com/articles/StrikeAMatch.html
"""
w1 = 'Healed'
words = ['Heard', 'Healthy', 'Help', 'Herded', 'Sealed', 'Sold']
for w2 in words:
print('Healed --- ' + w2)
print(string_similarity(w1, w2))
print()
约翰·拉特利奇答案的简短版本:
def get_bigrams(string):
'''
Takes a string and returns a list of bigrams
'''
s = string.lower()
return {s[i:i+2] for i in xrange(len(s) - 1)}
def string_similarity(str1, str2):
'''
Perform bigram comparison between two strings
and return a percentage match in decimal form
'''
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
return (2.0 * len(pairs1 & pairs2)) / (len(pairs1) + len(pairs2))
这是我建议的 StrikeAMatch 算法的 PHP 实现,作者 Simon White。优点(如链接中所说)是:
词汇相似性的真实反映——差异很小的字符串应该被认为是相似的。特别是,显着的子字符串重叠应该指向字符串之间的高度相似性。
对词序变化的鲁棒性——包含相同词但顺序不同的两个字符串应该被认为是相似的。另一方面,如果一个字符串只是另一个字符串中包含的字符的随机字谜,那么它应该(通常)被认为是不同的。
语言独立性——该算法不仅适用于英语,而且适用于许多不同的语言。
<?php
/**
* LetterPairSimilarity algorithm implementation in PHP
* @author Igal Alkon
* @link http://www.catalysoft.com/articles/StrikeAMatch.html
*/
class LetterPairSimilarity
{
/**
* @param $str
* @return mixed
*/
private function wordLetterPairs($str)
{
$allPairs = array();
// Tokenize the string and put the tokens/words into an array
$words = explode(' ', $str);
// For each word
for ($w = 0; $w < count($words); $w++)
{
// Find the pairs of characters
$pairsInWord = $this->letterPairs($words[$w]);
for ($p = 0; $p < count($pairsInWord); $p++)
{
$allPairs[] = $pairsInWord[$p];
}
}
return $allPairs;
}
/**
* @param $str
* @return array
*/
private function letterPairs($str)
{
$numPairs = mb_strlen($str)-1;
$pairs = array();
for ($i = 0; $i < $numPairs; $i++)
{
$pairs[$i] = mb_substr($str,$i,2);
}
return $pairs;
}
/**
* @param $str1
* @param $str2
* @return float
*/
public function compareStrings($str1, $str2)
{
$pairs1 = $this->wordLetterPairs(strtoupper($str1));
$pairs2 = $this->wordLetterPairs(strtoupper($str2));
$intersection = 0;
$union = count($pairs1) + count($pairs2);
for ($i=0; $i < count($pairs1); $i++)
{
$pair1 = $pairs1[$i];
$pairs2 = array_values($pairs2);
for($j = 0; $j < count($pairs2); $j++)
{
$pair2 = $pairs2[$j];
if ($pair1 === $pair2)
{
$intersection++;
unset($pairs2[$j]);
break;
}
}
}
return (2.0*$intersection)/$union;
}
}
这个讨论真的很有帮助,谢谢。我将算法转换为 VBA 以便与 Excel 一起使用,并编写了几个版本的工作表函数,一个用于简单比较一对字符串,另一个用于将一个字符串与一个字符串范围/字符串数组进行比较。strSimLookup 版本将最后一个最佳匹配作为字符串、数组索引或相似度度量返回。
此实现产生的结果与 Simon White 网站上的亚马逊示例中列出的结果相同,但在低分比赛中存在一些小例外;不确定差异在哪里蔓延,可能是 VBA 的 Split 函数,但我没有调查,因为它对我的目的工作正常。
'Implements functions to rate how similar two strings are on
'a scale of 0.0 (completely dissimilar) to 1.0 (exactly similar)
'Source: http://www.catalysoft.com/articles/StrikeAMatch.html
'Author: Bob Chatham, bob.chatham at gmail.com
'9/12/2010
Option Explicit
Public Function stringSimilarity(str1 As String, str2 As String) As Variant
'Simple version of the algorithm that computes the similiarity metric
'between two strings.
'NOTE: This verision is not efficient to use if you're comparing one string
'with a range of other values as it will needlessly calculate the pairs for the
'first string over an over again; use the array-optimized version for this case.
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Set sPairs1 = New Collection
Set sPairs2 = New Collection
WordLetterPairs str1, sPairs1
WordLetterPairs str2, sPairs2
stringSimilarity = SimilarityMetric(sPairs1, sPairs2)
Set sPairs1 = Nothing
Set sPairs2 = Nothing
End Function
Public Function strSimA(str1 As Variant, rRng As Range) As Variant
'Return an array of string similarity indexes for str1 vs every string in input range rRng
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Dim arrOut As Variant
Dim l As Long, j As Long
Set sPairs1 = New Collection
WordLetterPairs CStr(str1), sPairs1
l = rRng.Count
ReDim arrOut(1 To l)
For j = 1 To l
Set sPairs2 = New Collection
WordLetterPairs CStr(rRng(j)), sPairs2
arrOut(j) = SimilarityMetric(sPairs1, sPairs2)
Set sPairs2 = Nothing
Next j
strSimA = Application.Transpose(arrOut)
End Function
Public Function strSimLookup(str1 As Variant, rRng As Range, Optional returnType) As Variant
'Return either the best match or the index of the best match
'depending on returnTYype parameter) between str1 and strings in rRng)
' returnType = 0 or omitted: returns the best matching string
' returnType = 1 : returns the index of the best matching string
' returnType = 2 : returns the similarity metric
Dim sPairs1 As Collection
Dim sPairs2 As Collection
Dim metric, bestMetric As Double
Dim i, iBest As Long
Const RETURN_STRING As Integer = 0
Const RETURN_INDEX As Integer = 1
Const RETURN_METRIC As Integer = 2
If IsMissing(returnType) Then returnType = RETURN_STRING
Set sPairs1 = New Collection
WordLetterPairs CStr(str1), sPairs1
bestMetric = -1
iBest = -1
For i = 1 To rRng.Count
Set sPairs2 = New Collection
WordLetterPairs CStr(rRng(i)), sPairs2
metric = SimilarityMetric(sPairs1, sPairs2)
If metric > bestMetric Then
bestMetric = metric
iBest = i
End If
Set sPairs2 = Nothing
Next i
If iBest = -1 Then
strSimLookup = CVErr(xlErrValue)
Exit Function
End If
Select Case returnType
Case RETURN_STRING
strSimLookup = CStr(rRng(iBest))
Case RETURN_INDEX
strSimLookup = iBest
Case Else
strSimLookup = bestMetric
End Select
End Function
Public Function strSim(str1 As String, str2 As String) As Variant
Dim ilen, iLen1, ilen2 As Integer
iLen1 = Len(str1)
ilen2 = Len(str2)
If iLen1 >= ilen2 Then ilen = ilen2 Else ilen = iLen1
strSim = stringSimilarity(Left(str1, ilen), Left(str2, ilen))
End Function
Sub WordLetterPairs(str As String, pairColl As Collection)
'Tokenize str into words, then add all letter pairs to pairColl
Dim Words() As String
Dim word, nPairs, pair As Integer
Words = Split(str)
If UBound(Words) < 0 Then
Set pairColl = Nothing
Exit Sub
End If
For word = 0 To UBound(Words)
nPairs = Len(Words(word)) - 1
If nPairs > 0 Then
For pair = 1 To nPairs
pairColl.Add Mid(Words(word), pair, 2)
Next pair
End If
Next word
End Sub
Private Function SimilarityMetric(sPairs1 As Collection, sPairs2 As Collection) As Variant
'Helper function to calculate similarity metric given two collections of letter pairs.
'This function is designed to allow the pair collections to be set up separately as needed.
'NOTE: sPairs2 collection will be altered as pairs are removed; copy the collection
'if this is not the desired behavior.
'Also assumes that collections will be deallocated somewhere else
Dim Intersect As Double
Dim Union As Double
Dim i, j As Long
If sPairs1.Count = 0 Or sPairs2.Count = 0 Then
SimilarityMetric = CVErr(xlErrNA)
Exit Function
End If
Union = sPairs1.Count + sPairs2.Count
Intersect = 0
For i = 1 To sPairs1.Count
For j = 1 To sPairs2.Count
If StrComp(sPairs1(i), sPairs2(j)) = 0 Then
Intersect = Intersect + 1
sPairs2.Remove j
Exit For
End If
Next j
Next i
SimilarityMetric = (2 * Intersect) / Union
End Function
对不起,答案不是作者发明的。这是一种众所周知的算法,最早由 Digital Equipment Corporation 提出,通常被称为 shingling。
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-015.pdf
我将 Simon White 的算法翻译成 PL/pgSQL。这是我的贡献。
<!-- language: lang-sql -->
create or replace function spt1.letterpairs(in p_str varchar)
returns varchar as
$$
declare
v_numpairs integer := length(p_str)-1;
v_pairs varchar[];
begin
for i in 1 .. v_numpairs loop
v_pairs[i] := substr(p_str, i, 2);
end loop;
return v_pairs;
end;
$$ language 'plpgsql';
--===================================================================
create or replace function spt1.wordletterpairs(in p_str varchar)
returns varchar as
$$
declare
v_allpairs varchar[];
v_words varchar[];
v_pairsinword varchar[];
begin
v_words := regexp_split_to_array(p_str, '[[:space:]]');
for i in 1 .. array_length(v_words, 1) loop
v_pairsinword := spt1.letterpairs(v_words[i]);
if v_pairsinword is not null then
for j in 1 .. array_length(v_pairsinword, 1) loop
v_allpairs := v_allpairs || v_pairsinword[j];
end loop;
end if;
end loop;
return v_allpairs;
end;
$$ language 'plpgsql';
--===================================================================
create or replace function spt1.arrayintersect(ANYARRAY, ANYARRAY)
returns anyarray as
$$
select array(select unnest($1) intersect select unnest($2))
$$ language 'sql';
--===================================================================
create or replace function spt1.comparestrings(in p_str1 varchar, in p_str2 varchar)
returns float as
$$
declare
v_pairs1 varchar[];
v_pairs2 varchar[];
v_intersection integer;
v_union integer;
begin
v_pairs1 := wordletterpairs(upper(p_str1));
v_pairs2 := wordletterpairs(upper(p_str2));
v_union := array_length(v_pairs1, 1) + array_length(v_pairs2, 1);
v_intersection := array_length(arrayintersect(v_pairs1, v_pairs2), 1);
return (2.0 * v_intersection / v_union);
end;
$$ language 'plpgsql';
漂亮的 Scala 版本:
def pairDistance(s1: String, s2: String): Double = {
def strToPairs(s: String, acc: List[String]): List[String] = {
if (s.size < 2) acc
else strToPairs(s.drop(1),
if (s.take(2).contains(" ")) acc else acc ::: List(s.take(2)))
}
val lst1 = strToPairs(s1.toUpperCase, List())
val lst2 = strToPairs(s2.toUpperCase, List())
(2.0 * lst2.intersect(lst1).size) / (lst1.size + lst2.size)
}
字符串相似度度量包含字符串比较中使用的许多不同度量的概述(维基百科也有概述)。这些指标中的大部分都是在库simmetrics中实现的。
未包含在给定概述中的另一个度量示例是压缩距离(试图近似Kolmogorov 的复杂性),它可用于比您提供的文本更长的文本。
您还可以考虑查看更广泛的自然语言处理主题。这些R 包可以让您快速入门(或至少提供一些想法)。
最后一次编辑 - 在 SO 上搜索有关此主题的其他问题,有很多相关问题。
该算法的更快的 PHP 版本:
/**
*
* @param $str
* @return mixed
*/
private static function wordLetterPairs ($str)
{
$allPairs = array();
// Tokenize the string and put the tokens/words into an array
$words = explode(' ', $str);
// For each word
for ($w = 0; $w < count($words); $w ++) {
// Find the pairs of characters
$pairsInWord = self::letterPairs($words[$w]);
for ($p = 0; $p < count($pairsInWord); $p ++) {
$allPairs[$pairsInWord[$p]] = $pairsInWord[$p];
}
}
return array_values($allPairs);
}
/**
*
* @param $str
* @return array
*/
private static function letterPairs ($str)
{
$numPairs = mb_strlen($str) - 1;
$pairs = array();
for ($i = 0; $i < $numPairs; $i ++) {
$pairs[$i] = mb_substr($str, $i, 2);
}
return $pairs;
}
/**
*
* @param $str1
* @param $str2
* @return float
*/
public static function compareStrings ($str1, $str2)
{
$pairs1 = self::wordLetterPairs(mb_strtolower($str1));
$pairs2 = self::wordLetterPairs(mb_strtolower($str2));
$union = count($pairs1) + count($pairs2);
$intersection = count(array_intersect($pairs1, $pairs2));
return (2.0 * $intersection) / $union;
}
对于我拥有的数据(大约 2300 次比较),我使用Igal Alkon 解决方案的运行时间为 0.58 秒,而我的运行时间为 0.35 秒。
这是R版本:
get_bigrams <- function(str)
{
lstr = tolower(str)
bigramlst = list()
for(i in 1:(nchar(str)-1))
{
bigramlst[[i]] = substr(str, i, i+1)
}
return(bigramlst)
}
str_similarity <- function(str1, str2)
{
pairs1 = get_bigrams(str1)
pairs2 = get_bigrams(str2)
unionlen = length(pairs1) + length(pairs2)
hit_count = 0
for(x in 1:length(pairs1)){
for(y in 1:length(pairs2)){
if (pairs1[[x]] == pairs2[[y]])
hit_count = hit_count + 1
}
}
return ((2.0 * hit_count) / unionlen)
}
受这些算法的启发,在 C99 中发布marzagao 的答案
double dice_match(const char *string1, const char *string2) {
//check fast cases
if (((string1 != NULL) && (string1[0] == '\0')) ||
((string2 != NULL) && (string2[0] == '\0'))) {
return 0;
}
if (string1 == string2) {
return 1;
}
size_t strlen1 = strlen(string1);
size_t strlen2 = strlen(string2);
if (strlen1 < 2 || strlen2 < 2) {
return 0;
}
size_t length1 = strlen1 - 1;
size_t length2 = strlen2 - 1;
double matches = 0;
int i = 0, j = 0;
//get bigrams and compare
while (i < length1 && j < length2) {
char a[3] = {string1[i], string1[i + 1], '\0'};
char b[3] = {string2[j], string2[j + 1], '\0'};
int cmp = strcmpi(a, b);
if (cmp == 0) {
matches += 2;
}
i++;
j++;
}
return matches / (length1 + length2);
}
基于原始文章的一些测试:
#include <stdio.h>
void article_test1() {
char *string1 = "FRANCE";
char *string2 = "FRENCH";
printf("====%s====\n", __func__);
printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);
}
void article_test2() {
printf("====%s====\n", __func__);
char *string = "Healed";
char *ss[] = {"Heard", "Healthy", "Help",
"Herded", "Sealed", "Sold"};
int correct[] = {44, 55, 25, 40, 80, 0};
for (int i = 0; i < 6; ++i) {
printf("%2.f%% == %d%%\n", dice_match(string, ss[i]) * 100, correct[i]);
}
}
void multicase_test() {
char *string1 = "FRaNcE";
char *string2 = "fREnCh";
printf("====%s====\n", __func__);
printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);
}
void gg_test() {
char *string1 = "GG";
char *string2 = "GGGGG";
printf("====%s====\n", __func__);
printf("%2.f%% != 100%%\n", dice_match(string1, string2) * 100);
}
int main() {
article_test1();
article_test2();
multicase_test();
gg_test();
return 0;
}
我的 JavaScript 实现采用一个字符串或字符串数组,以及一个可选的下限(默认下限为 0.5)。如果你传递一个字符串,它会根据字符串的相似度分数是否大于或等于下限返回真或假。如果你传递一个字符串数组,它将返回一个由相似度分数大于或等于下限的字符串组成的数组,按分数排序。
例子:
'Healed'.fuzzy('Sealed'); // returns true
'Healed'.fuzzy('Help'); // returns false
'Healed'.fuzzy('Help', 0.25); // returns true
'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy']);
// returns ["Sealed", "Healthy"]
'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy'], 0);
// returns ["Sealed", "Healthy", "Heard", "Herded", "Help", "Sold"]
这里是:
(function(){
var default_floor = 0.5;
function pairs(str){
var pairs = []
, length = str.length - 1
, pair;
str = str.toLowerCase();
for(var i = 0; i < length; i++){
pair = str.substr(i, 2);
if(!/\s/.test(pair)){
pairs.push(pair);
}
}
return pairs;
}
function similarity(pairs1, pairs2){
var union = pairs1.length + pairs2.length
, hits = 0;
for(var i = 0; i < pairs1.length; i++){
for(var j = 0; j < pairs2.length; j++){
if(pairs1[i] == pairs2[j]){
pairs2.splice(j--, 1);
hits++;
break;
}
}
}
return 2*hits/union || 0;
}
String.prototype.fuzzy = function(strings, floor){
var str1 = this
, pairs1 = pairs(this);
floor = typeof floor == 'number' ? floor : default_floor;
if(typeof(strings) == 'string'){
return str1.length > 1 && strings.length > 1 && similarity(pairs1, pairs(strings)) >= floor || str1.toLowerCase() == strings.toLowerCase();
}else if(strings instanceof Array){
var scores = {};
strings.map(function(str2){
scores[str2] = str1.length > 1 ? similarity(pairs1, pairs(str2)) : 1*(str1.toLowerCase() == str2.toLowerCase());
});
return strings.filter(function(str){
return scores[str] >= floor;
}).sort(function(a, b){
return scores[b] - scores[a];
});
}
};
})();
基于 Michael La Voie 的出色 C# 版本,根据将其设为扩展方法的请求,这就是我想出的。这样做的主要好处是您可以按匹配百分比对通用列表进行排序。例如,假设您的对象中有一个名为“City”的字符串字段。用户搜索“Chester”,您希望按匹配的降序返回结果。例如,您希望 Chester 的文字匹配显示在 Rochester 之前。为此,请向您的对象添加两个新属性:
public string SearchText { get; set; }
public double PercentMatch
{
get
{
return City.ToUpper().PercentMatchTo(this.SearchText.ToUpper());
}
}
然后在每个对象上,将 SearchText 设置为用户搜索的内容。然后,您可以使用以下内容轻松对其进行排序:
zipcodes = zipcodes.OrderByDescending(x => x.PercentMatch);
这是使其成为扩展方法的轻微修改:
/// <summary>
/// This class implements string comparison algorithm
/// based on character pair similarity
/// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
/// </summary>
public static double PercentMatchTo(this string str1, string str2)
{
List<string> pairs1 = WordLetterPairs(str1.ToUpper());
List<string> pairs2 = WordLetterPairs(str2.ToUpper());
int intersection = 0;
int union = pairs1.Count + pairs2.Count;
for (int i = 0; i < pairs1.Count; i++)
{
for (int j = 0; j < pairs2.Count; j++)
{
if (pairs1[i] == pairs2[j])
{
intersection++;
pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success
break;
}
}
}
return (2.0 * intersection) / union;
}
/// <summary>
/// Gets all letter pairs for each
/// individual word in the string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private static List<string> WordLetterPairs(string str)
{
List<string> AllPairs = new List<string>();
// Tokenize the string and put the tokens/words into an array
string[] Words = Regex.Split(str, @"\s");
// For each word
for (int w = 0; w < Words.Length; w++)
{
if (!string.IsNullOrEmpty(Words[w]))
{
// Find the pairs of characters
String[] PairsInWord = LetterPairs(Words[w]);
for (int p = 0; p < PairsInWord.Length; p++)
{
AllPairs.Add(PairsInWord[p]);
}
}
}
return AllPairs;
}
/// <summary>
/// Generates an array containing every
/// two consecutive letters in the input string
/// </summary>
/// <param name="str"></param>
/// <returns></returns>
private static string[] LetterPairs(string str)
{
int numPairs = str.Length - 1;
string[] pairs = new string[numPairs];
for (int i = 0; i < numPairs; i++)
{
pairs[i] = str.Substring(i, 2);
}
return pairs;
}
Dice 系数算法(Simon White / marzagao 的答案)在 Ruby 中的 amatch gem 中的 pair_distance_similar 方法中实现
https://github.com/flori/amatch
该 gem 还包含许多近似匹配和字符串比较算法的实现:Levenshtein 编辑距离、Sellers 编辑距离、Hamming 距离、最长公共子序列长度、最长公共子串长度、对距离度量、Jaro-Winkler 度量.
Haskell 版本——请随意提出修改建议,因为我没有做过多少 Haskell。
import Data.Char
import Data.List
-- Convert a string into words, then get the pairs of words from that phrase
wordLetterPairs :: String -> [String]
wordLetterPairs s1 = concat $ map pairs $ words s1
-- Converts a String into a list of letter pairs.
pairs :: String -> [String]
pairs [] = []
pairs (x:[]) = []
pairs (x:ys) = [x, head ys]:(pairs ys)
-- Calculates the match rating for two strings
matchRating :: String -> String -> Double
matchRating s1 s2 = (numberOfMatches * 2) / totalLength
where pairsS1 = wordLetterPairs $ map toLower s1
pairsS2 = wordLetterPairs $ map toLower s2
numberOfMatches = fromIntegral $ length $ pairsS1 `intersect` pairsS2
totalLength = fromIntegral $ length pairsS1 + length pairsS2
Clojure:
(require '[clojure.set :refer [intersection]])
(defn bigrams [s]
(->> (split s #"\s+")
(mapcat #(partition 2 1 %))
(set)))
(defn string-similarity [a b]
(let [a-pairs (bigrams a)
b-pairs (bigrams b)
total-count (+ (count a-pairs) (count b-pairs))
match-count (count (intersection a-pairs b-pairs))
similarity (/ (* 2 match-count) total-count)]
similarity))
Levenshtein 距离除以第一个字符串的长度(或者除以我的两个字符串的最小/最大/平均长度)怎么样?到目前为止,这对我有用。
嘿伙计们,我在 javascript 中试了一下,但我是新手,有人知道更快的方法吗?
function get_bigrams(string) {
// Takes a string and returns a list of bigrams
var s = string.toLowerCase();
var v = new Array(s.length-1);
for (i = 0; i< v.length; i++){
v[i] =s.slice(i,i+2);
}
return v;
}
function string_similarity(str1, str2){
/*
Perform bigram comparison between two strings
and return a percentage match in decimal form
*/
var pairs1 = get_bigrams(str1);
var pairs2 = get_bigrams(str2);
var union = pairs1.length + pairs2.length;
var hit_count = 0;
for (x in pairs1){
for (y in pairs2){
if (pairs1[x] == pairs2[y]){
hit_count++;
}
}
}
return ((2.0 * hit_count) / union);
}
var w1 = 'Healed';
var word =['Heard','Healthy','Help','Herded','Sealed','Sold']
for (w2 in word){
console.log('Healed --- ' + word[w2])
console.log(string_similarity(w1,word[w2]));
}
这是基于 Sørensen–Dice 索引(marzagao 的答案)的另一个版本的相似性,这是用 C++11 编写的:
/*
* Similarity based in Sørensen–Dice index.
*
* Returns the Similarity between _str1 and _str2.
*/
double similarity_sorensen_dice(const std::string& _str1, const std::string& _str2) {
// Base case: if some string is empty.
if (_str1.empty() || _str2.empty()) {
return 1.0;
}
auto str1 = upper_string(_str1);
auto str2 = upper_string(_str2);
// Base case: if the strings are equals.
if (str1 == str2) {
return 0.0;
}
// Base case: if some string does not have bigrams.
if (str1.size() < 2 || str2.size() < 2) {
return 1.0;
}
// Extract bigrams from str1
auto num_pairs1 = str1.size() - 1;
std::unordered_set<std::string> str1_bigrams;
str1_bigrams.reserve(num_pairs1);
for (unsigned i = 0; i < num_pairs1; ++i) {
str1_bigrams.insert(str1.substr(i, 2));
}
// Extract bigrams from str2
auto num_pairs2 = str2.size() - 1;
std::unordered_set<std::string> str2_bigrams;
str2_bigrams.reserve(num_pairs2);
for (unsigned int i = 0; i < num_pairs2; ++i) {
str2_bigrams.insert(str2.substr(i, 2));
}
// Find the intersection between the two sets.
int intersection = 0;
if (str1_bigrams.size() < str2_bigrams.size()) {
const auto it_e = str2_bigrams.end();
for (const auto& bigram : str1_bigrams) {
intersection += str2_bigrams.find(bigram) != it_e;
}
} else {
const auto it_e = str1_bigrams.end();
for (const auto& bigram : str2_bigrams) {
intersection += str1_bigrams.find(bigram) != it_e;
}
}
// Returns similarity coefficient.
return (2.0 * intersection) / (num_pairs1 + num_pairs2);
}
我正在寻找@marzagao 的答案所指示的算法的纯红宝石实现。不幸的是,@marzagao 指示的链接已损坏。在@s01ipsist 的回答中,他指出 ruby gem amatch的实现不在纯 ruby 中。所以我搜索了一下,发现gemfuzzy_match在这里有纯 ruby 实现(虽然这个 gem 使用amatch
)。我希望这会帮助像我这样的人。
为什么不针对 JavaScript 实现,我还解释了算法。
France
和French
。FRANCE: {FR, RA, AN, NC, CE}
FRENCH: {FR, RE, EN, NC, CH}
function similarity(s1, s2) {
const
set1 = pairs(s1.toUpperCase()), // [ FR, RA, AN, NC, CE ]
set2 = pairs(s2.toUpperCase()), // [ FR, RE, EN, NC, CH ]
intersection = set1.filter(x => set2.includes(x)); // [ FR, NC ]
// Tips: Instead of `2` multiply by `200`, To get percentage.
return (intersection.length * 2) / (set1.length + set2.length);
}
function pairs(input) {
const tokenized = [];
for (let i = 0; i < input.length - 1; i++)
tokenized.push(input.substring(i, 2 + i));
return tokenized;
}
console.log(similarity("FRANCE", "FRENCH"));
来自相同的原始来源。
**I've converted marzagao's answer to Java.**
import org.apache.commons.lang3.StringUtils; //Add a apache commons jar in pom.xml
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class SimilarityComparator {
public static void main(String[] args) {
String str0 = "Nischal";
String str1 = "Nischal";
double v = compareStrings(str0, str1);
System.out.println("Similarity betn " + str0 + " and " + str1 + " = " + v);
}
private static double compareStrings(String str1, String str2) {
List<String> pairs1 = wordLetterPairs(str1.toUpperCase());
List<String> pairs2 = wordLetterPairs(str2.toUpperCase());
int intersection = 0;
int union = pairs1.size() + pairs2.size();
for (String s : pairs1) {
for (int j = 0; j < pairs2.size(); j++) {
if (s.equals(pairs2.get(j))) {
intersection++;
pairs2.remove(j);
break;
}
}
}
return (2.0 * intersection) / union;
}
private static List<String> wordLetterPairs(String str) {
List<String> AllPairs = new ArrayList<>();
String[] Words = str.split("\\s");
for (String word : Words) {
if (StringUtils.isNotBlank(word)) {
String[] PairsInWord = letterPairs(word);
Collections.addAll(AllPairs, PairsInWord);
}
}
return AllPairs;
}
private static String[] letterPairs(String str) {
int numPairs = str.length() - 1;
String[] pairs = new String[numPairs];
for (int i = 0; i < numPairs; i++) {
try {
pairs[i] = str.substring(i, i + 2);
} catch (Exception e) {
pairs[i] = str.substring(i, numPairs);
}
}
return pairs;
}
}