我正在尝试将文本分类为多个标签,并且效果很好,但是由于我想考虑低于 0.5 阈值的预测标签,因此它更改predict()
为predict_proba()
获取标签的所有概率并根据不同的阈值选择值,但我是无法将每个标签的二元概率值转换为实际的文本标签。这是可重现的代码:
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
X_train = np.array(["new york is a hell of a town",
"new york was originally dutch",
"the big apple is great",
"new york is also called the big apple",
"nyc is nice",
"people abbreviate new york city as nyc",
"the capital of great britain is london",
"london is in the uk",
"london is in england",
"london is in great britain",
"it rains a lot in london",
"london hosts the british museum",
"new york is great and so is london",
"i like london better than new york"])
y_train_text = [["new york"],["new york"],["new york"],["new york"],["new york"],
["new york"],["london"],["london"],["london"],["london"],
["london"],["london"],["new york","london"],["new york","london"]]
X_test = np.array(['nice day in nyc',
'welcome to london',
'london is rainy',
'it is raining in britian',
'it is raining in britian and the big apple',
'it is raining in britian and nyc',
'hello welcome to new york. enjoy it here and london too'])
target_names = ['New York', 'London']
lb = MultiLabelBinarizer()
Y = lb.fit_transform(y_train_text)
classifier = Pipeline([
('tfidf', TfidfVectorizer()),
('clf', OneVsRestClassifier(LinearSVC()))])
classifier.fit(X_train, Y)
predicted = classifier.predict_proba(X_test)
这为我提供了每个 X_test 值的标签概率值现在,当我尝试lb.inverse_transform(predicted[0])
获取第一个 X_test 的实际标签时,它不起作用。
任何帮助,我做错了什么以及如何获得预期的结果。
注意:以上是虚拟数据,但我有500 labels
每个特定文本可以包含的数据not more than 5 labels
。