我被这个非常简单的引理所困扰,想知道最好的方法是什么。
From mathcomp Require Import ssrint rat ssralg ssrnum.
Import GRing.Theory.
Import Num.Theory.
Import Num.Def.
Open Scope ring_scope.
Lemma X (n m : nat) : (n <= m)%N -> n%:Q <= m%:Q.
Proof.
rewrite -lez_nat.
因此,_%:Q
是一个记号,_%:R
如
Then doing or中所记录的那样rat.v
,哪个是适用的正确引理,如:Search _ Num.le _%:R
Search _ (_%:R <= _%:R)
ler_nat
Lemma X (n m : nat) : (n <= m)%N -> n%:Q <= m%:Q.
Proof. by move=> le_nm; rewrite ler_nat. Qed.
Lemma X (n m : nat) : (n <= m)%N -> n%:Q <= m%:Q.
Proof.
by rewrite -lez_nat -(ler_int rat_numDomainType).
Qed.