1

我被这个非常简单的引理所困扰,想知道最好的方法是什么。

From mathcomp Require Import ssrint rat ssralg ssrnum.

Import GRing.Theory.
Import Num.Theory.
Import Num.Def.

Open Scope ring_scope.

Lemma X (n m : nat) : (n <= m)%N -> n%:Q <= m%:Q.
Proof.
rewrite -lez_nat.
4

2 回答 2

1

因此,_%:Q是一个记号,_%:R如 Then doing or中所记录的那样rat.v,哪个是适用的正确引理,如:Search _ Num.le _%:RSearch _ (_%:R <= _%:R)ler_nat

Lemma X (n m : nat) : (n <= m)%N -> n%:Q <= m%:Q.
Proof. by move=> le_nm; rewrite ler_nat. Qed.
于 2021-01-18T19:36:53.410 回答
0
Lemma X (n m : nat) : (n <= m)%N -> n%:Q <= m%:Q.
Proof.
by rewrite -lez_nat -(ler_int rat_numDomainType).
Qed.
于 2020-11-26T14:03:54.383 回答