我正在分享一个在 R 中解决这个问题的策略。
Step-1加载库和数据
library(tidyverse)
library(lubridate)
movies <- tibble(read.csv("movies.csv"))
movies$date <- as.Date(movies$date, format = "%d-%m-%Y")
在两个变量中设置要限制相似性搜索的行和列。假设您将搜索限制为 5 列和 4 行
filter_for_row <- 4
filter_for_col <- 5
得到最终结果
movies %>% filter(rank <= filter_for_col, row <= filter_for_row) %>% #Restricting search to designated rows and columns
group_by(Title, date) %>% mutate(d_id = row_number()) %>%
filter(d_id ==1) %>% # removing duplicate titles screened on any given day
group_by(Title) %>%
mutate(similarity = ifelse(lag(date)== date - lubridate::days(1), 1, 0)) %>% #checking whether it was screened previous day
group_by(date) %>%
summarise(total_movies_displayed = sum(d_id),
similar_movies = sum(similarity, na.rm = T),
similarity_percent = similar_movies/total_movies_displayed)
# A tibble: 3 x 4
date total_movies_displayed similar_movies similarity_percent
<date> <int> <dbl> <dbl>
1 2018-08-13 17 0 0
2 2018-08-14 17 10 0.588
3 2018-08-15 17 9 0.529
如果将过滤器分别更改为 12、12,则
filter_for_row <- 12
filter_for_col <- 12
movies %>% filter(rank <= filter_for_col, row <= filter_for_row) %>%
group_by(Title, date) %>% mutate(d_id = row_number()) %>%
filter(d_id ==1) %>%
group_by(Title) %>%
mutate(similarity = ifelse(lag(date)== date - lubridate::days(1), 1, 0)) %>%
group_by(date) %>%
summarise(total_movies_displayed = sum(d_id),
similar_movies = sum(similarity, na.rm = T),
similarity_percent = similar_movies/total_movies_displayed)
# A tibble: 3 x 4
date total_movies_displayed similar_movies similarity_percent
<date> <int> <dbl> <dbl>
1 2018-08-13 68 0 0
2 2018-08-14 75 61 0.813
3 2018-08-15 72 54 0.75
祝你好运