2

假设你有一个数据框

month  1  2  3
year          
2019   a  b  c
2020   d  e  f

我想要的是一个转换后的数据框,其中行名(年)和列名(月)作为索引:

           data
2019-01-01    a
2019-02-01    b
2019-03-01    c
2020-01-01    d
2020-02-01    e
2020-03-01    f

在 Pandas 中有没有优雅的方法来做到这一点?

构建 dfs 的最小示例

# this builds the dataframe
import numpy as np
import pandas as pd
from datetime import date
df = pd.DataFrame(np.array([['a', 'b', 'c'], ['d', 'e', 'f']]), columns = [1, 2, 3], index = [2019, 2020])
df.columns.name = "month"
df.index.name = "year"

所需的数据框:

# this builds the desire dataframe
desired_index = [date(2019,1,1), date(2019,2,1), date(2019,3,1), date(2020,1,1), date(2020,2,1), date(2020,3,1)]
desired_df = pd.DataFrame(np.array(['a', 'b', 'c', 'd', 'e', 'f']), columns = ['data'], index = desired_index)
4

1 回答 1

2

使用DataFrame.stackwithSeries.to_frame到一列DataFrame,然后使用sMultiIndex在列表理解中将展平转换为日期时间:f-string

df = df.stack().to_frame('data')
df.index = pd.to_datetime([f'{y}-{m}-1' for y, m in df.index])
print (df)
           data
2019-01-01    a
2019-02-01    b
2019-03-01    c
2020-01-01    d
2020-02-01    e
2020-03-01    f

DataFrame.melt正确顺序的替代解决方案DataFrame.sort_index

df = df.reset_index().melt('year', value_name='data')
df.index = pd.to_datetime(df[['year', 'month']].assign(day=1))
df = df[['data']].sort_index()
print (df)
           data
2019-01-01    a
2019-02-01    b
2019-03-01    c
2020-01-01    d
2020-02-01    e
2020-03-01    f
于 2020-11-13T08:11:12.697 回答