10

我在为加载的 COLLADA 模型设置动画时遇到了一些问题。我已经编写了自己的解析器,现在我也想编写自己的绘图程序。问题在于,一旦我在我的模型上启用动画,手、腿和头部就会从模型的原点伸展开。(加载器是根据这里的教程实现的:COLLADA Tutorial

我在模型的绘制函数中做的第一件事是使用读取块中的给定目标设置关节矩阵(不是世界矩阵!),例如,如果我读取如下通道:

<channel source="#some_sampler" target="some_joint/transform(3)(2)"/>

在第一步中,我将使用 sid="transform" 修改关节的jointMatrix 中的矩阵组件(3)(2):

if( mCurrentAnimations_.size() > 0 ) {
    unsigned currentFrame = GEAR::Root::getSingleton().getFrameEvent().frame;
    bool updateTime = false;
    if( currentFrame != mLastFrameUpdate_ ) {
        if( timeSinceLastFrame < 1.0f ) 
            updateTime = true;
        mLastFrameUpdate_ = currentFrame;
    }

    /****************************************************
     * If we have an active animation,                  *
     * we animate it in each of it's defined channels   *
     ***************************************************/
    std::list<DAEAnimation*>::iterator it = mCurrentAnimations_.begin();
    while( it != mCurrentAnimations_.end() ) {
        for( int c = 0; c < (*it)->animation->channels.size(); ++c ) {
            // update the time of the channelanimation if requested
            if( updateTime ) {
                (*it)->channelStates[c].elapsedTime += timeSinceLastFrame;
            }

            GEAR::COLLADA::Channel* channel = (*it)->animation->channels[c];
            // read the two indices depending on the time we're 
            int firstKeyframeTimeIndex = 0;
            int secondKeyframeTimeIndex = 0;
            for( int i = 0; i < channel->sampler->inputSource->mFloatArray_->mCount_; ++i ) {
                float time = channel->sampler->inputSource->mFloatArray_->mFloats_[i];
                if( firstKeyframeTimeIndex == secondKeyframeTimeIndex && time > (*it)->channelStates[c].elapsedTime && i > 0) {
                    firstKeyframeTimeIndex = i-1;
                    secondKeyframeTimeIndex = i;
                    break;
                }
                if( firstKeyframeTimeIndex == secondKeyframeTimeIndex && i == channel->sampler->inputSource->mFloatArray_->mCount_-1 ) {
                    (*it)->channelStates[c].elapsedTime = 0.0f;
                    firstKeyframeTimeIndex = i;
                    secondKeyframeTimeIndex = 0;
                    break;
                }
            }
            // look what kind of TargetAccessor we have
            if( channel->targetAccessor != NULL && channel->targetAccessor->type == GEAR::MATRIX_ACCESSOR ) {
                // ok we have to read 1 value for first and second index
                float firstValue = channel->sampler->outputSource->mFloatArray_->mFloats_[firstKeyframeTimeIndex];
                float secondValue = channel->sampler->outputSource->mFloatArray_->mFloats_[secondKeyframeTimeIndex];

                float firstTime = channel->sampler->inputSource->mFloatArray_->mFloats_[firstKeyframeTimeIndex];
                float secondTime = channel->sampler->inputSource->mFloatArray_->mFloats_[secondKeyframeTimeIndex];
                float interpolateValue = 1.0f / (secondTime - firstTime) * (secondTime - (*it)->channelStates[c].elapsedTime);
                // now we calculate an linear interpolated value
                float value = (secondValue*interpolateValue) + (firstValue*(1.0-interpolateValue));

                // now we have to write this value to the Joint's Matrix
                int entry = ((COLLADA::MatrixTargetAccessor*)channel->targetAccessor)->firstAccessor*4+((COLLADA::MatrixTargetAccessor*)channel->targetAccessor)->secondAccessor;
                channel->targetJoint->matrix->jointSpaceMatrix.entries[entry] = channel->targetJoint->matrix->matrix.entries[entry] + value;
            }
        }
        ++it;
    }
}

在所有通道修改jointMatrices后,我通过在根Joint上调用以下函数来重新计算joint的worldMatrices:

    void 
COLLADA::Joint::recalcWorldSpaceTransMat() {
    GEAR::Mat4 parentMat;
    if( parent != NULL )
        parentMat = parent->worldSpaceTransformationMatrix;
    // @todo Here we have to test against NULL!
    if( matrix != NULL ) 
        this->worldSpaceTransformationMatrix = parentMat * matrix->jointSpaceMatrix;
    else {
        this->worldSpaceTransformationMatrix = parentMat;
    }
    //std::cout << "Joint " << sid << " recalculated\n";
    for( int i = 0; i < mChildJoints_.size(); ++i )
        mChildJoints_[i]->recalcWorldSpaceTransMat();
}

现在一切都应该准备好在我的绘制函数的最后一部分绘制我的模型宽度:

for( int i = 0; i < mSubMeshes_.size(); ++i ) {
    for( int k = 0; k < mSubMeshes_[i]->mSubMeshes_.size(); ++k ) {
        // first we animate it
        GEAR::DAESubMesh* submesh = mSubMeshes_[i]->mSubMeshes_[k];
        submesh->buffer->lock( true );
        {
            for( unsigned v = 0; v < submesh->buffer->getNumVertices(); ++v ) {
                // get the array of joints, which influence the current vertex
                DAEVertexInfo* vertexInfo = submesh->vertexInfo[v];
                GEAR::Vec3 vertex; // do not init the vertex with any value!
                float totalWeight = 0.0f;
                for( int j = 0; j < vertexInfo->joints.size(); ++j ) {
                    Mat4& invBindPoseMatrix = vertexInfo->joints[j]->joint->invBindPoseMatrix;
                    Mat4& transMat = vertexInfo->joints[j]->joint->worldSpaceTransformationMatrix;
                    totalWeight += vertexInfo->joints[j]->weight;
                    vertex += (transMat*invBindPoseMatrix*(submesh->skin->bindShapeMatrix*vertexInfo->vertex))*vertexInfo->joints[j]->weight;
                }
                if( totalWeight != 1.0f ) {
                    float normalizedWeight = 1.0f / totalWeight;
                    vertex *= normalizedWeight;
                }
                submesh->buffer->bufferVertexPos( v, vertex );
            }
        }
        submesh->buffer->unlock();

        mSubMeshes_[i]->mSubMeshes_[k]->buffer->draw( GEAR::TRIANGLES, 0, mSubMeshes_[i]->mSubMeshes_[k]->buffer->getNumVertices() );
    }
}

现在的问题是,输出如下所示: 在此处输入图像描述

我确定数据加载例程实现正确,因为步行人的一般动画是可见的,但网格变形: 在此处输入图像描述

正如我所说,当我取消注释该行时:

channel->targetJoint->matrix->jointSpaceMatrix.entries[entry] = channel->targetJoint->matrix->matrix.entries[entry] + value;

动画被禁用,模型以其标准姿势显示: 在此处输入图像描述

现在,当我在重新计算关节的worldMatrix之前像这样向jointMatrices的前3列添加标准化时:

GEAR::Vec3 row1( matrix->jointSpaceMatrix.entries[0], matrix->jointSpaceMatrix.entries[1], matrix->jointSpaceMatrix.entries[2] );
row1.normalize();
matrix->jointSpaceMatrix.entries[0] = row1.x;
matrix->jointSpaceMatrix.entries[1] = row1.y;
matrix->jointSpaceMatrix.entries[2] = row1.z;
GEAR::Vec3 row2( matrix->jointSpaceMatrix.entries[4], matrix->jointSpaceMatrix.entries[5], matrix->jointSpaceMatrix.entries[6] );
row2.normalize();
matrix->jointSpaceMatrix.entries[4] = row2.x;
matrix->jointSpaceMatrix.entries[5] = row2.y;
matrix->jointSpaceMatrix.entries[6] = row2.z;
GEAR::Vec3 row3( matrix->jointSpaceMatrix.entries[8], matrix->jointSpaceMatrix.entries[9], matrix->jointSpaceMatrix.entries[10] );
row3.normalize();
matrix->jointSpaceMatrix.entries[8] = row3.x;
matrix->jointSpaceMatrix.entries[9] = row3.y;
matrix->jointSpaceMatrix.entries[10] = row3.z;

问题仍然存在,但这次出现在另一个输出中。这个人现在看起来像一个外星人:D,但这会减少缩放: 在此处输入图像描述

我现在不完全是,我是否以正确的方式完成了规范化。这种规范化真的需要吗?教程中没有描述它,我也找不到任何相关的东西。

毕竟,我从教程页面查看了代码中插值的实现。并且:他们根本不使用任何四元数来插入孔矩阵。他们所做的是以下(这对我不起作用):

        Mat4 temp;

    for (int i = 0; i < 16; ++i)
        temp.entries[i] = interpolatef(matrix->jointSpaceMatrixStart.entries[i],matrix->jointSpaceMatrixFinish.entries[i],matrix->delta);

    Vec3 forward,up,right,translation;
    forward = Vec3(temp.entries[8], temp.entries[9], temp.entries[10]);
    up= Vec3(temp.entries[4], temp.entries[5], temp.entries[6]);
    right = Vec3(temp.entries[0], temp.entries[1], temp.entries[2]);

    forward.normalize();
    up.normalize();
    right.normalize();

    temp.entries[8] = forward.x; temp.entries[9] = forward.y; temp.entries[10] = forward.z;
    temp.entries[4] = up.x; temp.entries[5] = up.y; temp.entries[6] = up.z;
    temp.entries[0] = right.x; temp.entries[1] = right.y; temp.entries[2] = right.z;

    matrix->jointSpaceMatrix = GEAR::Mat4(temp);

然后我在另一种方法中使用四元数(也不适用于我):

        // wat we need for interpolation: rotMatStart, rotMatFinish, delta

    // create rotation matrices from our 2 given matrices
    GEAR::Mat4 rotMatStart = matrix->jointSpaceMatrixStart;
    rotMatStart.setTranslationPart( GEAR::VEC3_ZERO );
    GEAR::Mat4 rotMatFinish = matrix->jointSpaceMatrixFinish;
    rotMatFinish.setTranslationPart( GEAR::VEC3_ZERO );

    rotMatStart.transpose();
    rotMatFinish.transpose();

    // create Quaternions, which represent these 2 matrices
    float w = GEAR::Tools::sqr(1.0 + rotMatStart.entries[0] + rotMatStart.entries[5] + rotMatStart.entries[10]) / 2.0;
    float w4 = (4.0 * w);
    float x = (rotMatStart.entries[6] - rotMatStart.entries[9]) / w4 ;
    float y = (rotMatStart.entries[8] - rotMatStart.entries[2]) / w4 ;
    float z = (rotMatStart.entries[1] - rotMatStart.entries[4]) / w4 ;
    GEAR::Quaternion rotQuadStart(x, y, z, w);
    rotQuadStart.normalize();
    w = GEAR::Tools::sqr(1.0 + rotMatFinish.entries[0] + rotMatFinish.entries[5] + rotMatFinish.entries[10]) / 2.0;
    w4 = (4.0 * w);
    x = (rotMatFinish.entries[6] - rotMatFinish.entries[9]) / w4 ;
    y = (rotMatFinish.entries[8] - rotMatFinish.entries[2]) / w4 ;
    z = (rotMatFinish.entries[1] - rotMatFinish.entries[4]) / w4 ;
    GEAR::Quaternion rotQuadFinish(x, y, z, w);
    rotQuadFinish.normalize();

    // create the interpolated rotation matrix
    GEAR::Quaternion slerpedRotQuat = slerp(rotQuadStart, rotQuadFinish, matrix->delta );
    slerpedRotQuat.normalize();
    GEAR::Mat4 rotMat;
    slerpedRotQuat.createMatrix( rotMat );

    // interpolate the translation part
    GEAR::Vec3 transVecStart(0.0,0.0,0.0);
    matrix->jointSpaceMatrixStart.getTranslatedVector3D( transVecStart );
    GEAR::Vec3 transVecFinish(0.0,0.0,0.0);
    matrix->jointSpaceMatrixFinish.getTranslatedVector3D( transVecFinish );

    GEAR::Mat4 transMat;
    transMat.setTranslation( transVecFinish*matrix->delta + (transVecStart*(1.0f-matrix->delta)) );
    // now write the resulting Matrix back to the Joint
    matrix->jointSpaceMatrix = transMat * rotMat;

它也不适合我。似乎没有任何效果。我真的不知道这是怎么回事。


现在 2 天后,由于 datenwolf 的回答,我得到了它的工作

我想告诉所有我是如何让它工作的。现在一切似乎都清楚了,这一直只是一小步。现在我们从动画部分开始。我遍历所有通道并将开始和结束值以及范围为 0.0 1.0 的插值增量值保存到关节,通道动画:

if( mCurrentAnimations_.size() > 0 ) {
    unsigned currentFrame = GEAR::Root::getSingleton().getFrameEvent().frame;
    bool updateTime = false;
    if( currentFrame != mLastFrameUpdate_ ) {
        if( timeSinceLastFrame < 1.0f ) 
            updateTime = true;
        mLastFrameUpdate_ = currentFrame;
    }

    /****************************************************
     * If we have an active animation,                  *
     * we animate it in each of it's defined channels   *
     ***************************************************/
    std::list<DAEAnimation*>::iterator it = mCurrentAnimations_.begin();
    while( it != mCurrentAnimations_.end() ) {
        for( int c = 0; c < (*it)->animation->channels.size(); ++c ) {
            // update the time of the channelanimation if requested
            if( updateTime ) {
                (*it)->channelStates[c].elapsedTime += timeSinceLastFrame;
            }

            GEAR::COLLADA::Channel* channel = (*it)->animation->channels[c];
            // read the two indices depending on the time we're 
            int firstIndex = 0;
            int secondIndex = 1;
            for( int i = 0; i < channel->sampler->inputSource->mFloatArray_->mCount_; ++i ) {
                float time = channel->sampler->inputSource->mFloatArray_->mFloats_[i];
                if( time > (*it)->channelStates[c].elapsedTime ) {
                    firstIndex = i-1;
                    secondIndex = i;
                    if( firstIndex == -1 ) // set to last frame
                        firstIndex = channel->sampler->inputSource->mFloatArray_->mCount_ - 1;
                    break;
                }
                else if( i == channel->sampler->inputSource->mFloatArray_->mCount_ - 1 ) {
                    (*it)->channelStates[c].elapsedTime -= channel->sampler->inputSource->mFloatArray_->mFloats_[i];
                    firstIndex = 0;
                    secondIndex = 1;
                    break;
                }
            }
            // look what kind of TargetAccessor we have
            if( channel->targetAccessor != NULL && channel->targetAccessor->type == GEAR::MATRIX_ACCESSOR ) {
                /************************************************************************
                 * Matrix accessors, which are read from a COLLADA <channel> block      *
                 * will always target one matrix component they animate.                *
                 * Such accessors are for example:                                      *
                 * <channel source"#someSource" target="someJoint/transform(0)(2)"/>    *
                 *                                                                      *
                 * @TODO:                                                               *
                 * In a pre processing step, we have to group all channels, which       *
                 * operate on the same joint. In order to accelerate the processing of  *
                 * grouped channels, we have to expand the number of keyframes of all   *
                 * channels to the maximum of all channels.                             *
                 ************************************************************************/
                unsigned entry = ((COLLADA::MatrixTargetAccessor*)channel->targetAccessor)->index;
                float firstTime = channel->sampler->inputSource->mFloatArray_->mFloats_[firstIndex];
                float secondTime = channel->sampler->inputSource->mFloatArray_->mFloats_[secondIndex];
                // in case of matrix accessor, we write the startMatrix and the endMatrix to the Joints accessor, who finally will do the animation interpolation
                channel->targetJoint->matrix->interpolationRequired = true;
                // write out the start and end value to the jointSpaceMatrix
                // this matrix will later be interpolated
                channel->targetJoint->matrix->jointSpaceMatrixStart.entries[entry] = channel->sampler->outputSource->mFloatArray_->mFloats_[firstIndex];
                channel->targetJoint->matrix->jointSpaceMatrixFinish.entries[entry] = channel->sampler->outputSource->mFloatArray_->mFloats_[secondIndex];
                // the delta value is in the range [0.0,1.0]
                channel->targetJoint->matrix->delta = 1.0f / (secondTime - firstTime) * (secondTime - (*it)->channelStates[c].elapsedTime);
            }
        }
        ++it;
    }
}

如您所见,这里根本没有插值。我们简单地缓存所有动画关节的开始和结束值以及一个增量(我们还在每个修改的关节上设置一个标志)

现在在所有动画完成后,我们在所有根关节上调用函数 interpolateMatrices():

    for( int i = 0; i < mSourceModel_->mVisualSceneLibrary_.mVisualScenes_.size(); ++i ) {
    for( int v = 0; v < mSourceModel_->mVisualSceneLibrary_.mVisualScenes_[i]->mSkeleton_.size(); ++v ) {
        if( mSourceModel_->mVisualSceneLibrary_.mVisualScenes_[i]->mSkeleton_[v]->mRootJoint_ != NULL ) {
            /************************************************************************************
             * Now we have constructed all jointSpaceMatrixces for the start and the end and    *
             * we're ready to interpolate them and to also recalculate the joint's              *
             * worldSpaceMatrix.                                                                *
             ***********************************************************************************/
            mSourceModel_->mVisualSceneLibrary_.mVisualScenes_[i]->mSkeleton_[v]->mRootJoint_->interpolateMatrices();
        }
    }
}

这并不新鲜,但现在有趣的部分是插值的实现。根本没有 qith 四元数:

void COLLADA::Joint::interpolateMatrices() {
if( matrix != NULL && matrix->interpolationRequired ) {

    for (unsigned i = 0; i < 16; ++i)
        matrix->jointSpaceMatrix.entries[i] = interpolatef(matrix->jointSpaceMatrixStart.entries[i],matrix->jointSpaceMatrixFinish.entries[i],matrix->delta);

    Vec3 forward,up,right,translation;
    forward = Vec3(matrix->jointSpaceMatrix.entries[8], matrix->jointSpaceMatrix.entries[9], matrix->jointSpaceMatrix.entries[10]);
    up= Vec3(matrix->jointSpaceMatrix.entries[4], matrix->jointSpaceMatrix.entries[5], matrix->jointSpaceMatrix.entries[6]);
    right = Vec3(matrix->jointSpaceMatrix.entries[0], matrix->jointSpaceMatrix.entries[1], matrix->jointSpaceMatrix.entries[2]);

    forward.normalize();
    up.normalize();
    right.normalize();

    matrix->jointSpaceMatrix.entries[8] = forward.x; matrix->jointSpaceMatrix.entries[9] = forward.y; matrix->jointSpaceMatrix.entries[10] = forward.z;
    matrix->jointSpaceMatrix.entries[4] = up.x; matrix->jointSpaceMatrix.entries[5] = up.y; matrix->jointSpaceMatrix.entries[6] = up.z;
    matrix->jointSpaceMatrix.entries[0] = right.x; matrix->jointSpaceMatrix.entries[1] = right.y; matrix->jointSpaceMatrix.entries[2] = right.z;

    matrix->jointSpaceMatrix.entries[15] = 1.0f; // this component is always 1.0! In some files, this is exported the wrong way, which causes bugs!
}
/********************************************************
 * After the interpolation is finished,                 *
 * we have to recalculate the joint's worldSpaceMatrix. *
 ********************************************************/
GEAR::Mat4 parentMat;
if( parent != NULL )
    parentMat = parent->worldSpaceTransformationMatrix;
if( matrix != NULL ) 
    worldSpaceTransformationMatrix = (parentMat * matrix->jointSpaceMatrix);
else 
    worldSpaceTransformationMatrix = parentMat;
skinningMatrix = worldSpaceTransformationMatrix*invBindPoseMatrix;

// also interpolate and recalculate all childs
for( unsigned k = 0; k < mChildJoints_.size(); ++k )
    mChildJoints_[k]->interpolateMatrices();

}

如您所见,我们简单地对矩阵的所有值进行插值,然后对矩阵的上 3 列进行归一化。之后,我们立即重新计算该关节的 worldSpaceMatrix,以及完整的蒙皮矩阵以节省性能。现在我们几乎完成了所有工作。最后要做的是真正为顶点设置动画,然后绘制网格:

for( int i = 0; i < mSubMeshes_.size(); ++i ) {
    for( int k = 0; k < mSubMeshes_[i]->mSubMeshes_.size(); ++k ) {
        // first we animate it
        GEAR::DAESubMesh* submesh = mSubMeshes_[i]->mSubMeshes_[k];
        submesh->buffer->lock( true );
        {
            for( unsigned v = 0; v < submesh->buffer->getNumVertices(); ++v ) {
                // get the array of joints, which influence the current vertex
                DAEVertexInfo* vertexInfo = submesh->vertexInfo[v];
                GEAR::Vec3 vertex; // do not init the vertex with any value!
                float totalWeight = 0.0f;
                for( int j = 0; j < vertexInfo->joints.size(); ++j ) {
                    totalWeight += vertexInfo->joints[j]->weight;
                    vertex += ((vertexInfo->joints[j]->joint->skinningMatrix*(vertexInfo->vertex))*vertexInfo->joints[j]->weight);
                }
                // since it isn't guaranteed that the total weight is exactly 1.0, we have no normalize it
                // @todo this should be moved to the parser
                if( totalWeight != 1.0f ) {
                    float normalizedWeight = 1.0f / totalWeight;
                    vertex *= normalizedWeight;
                }
                submesh->buffer->bufferVertexPos( v, vertex );
            }
        }
        submesh->buffer->unlock();

        mSubMeshes_[i]->mSubMeshes_[k]->buffer->draw( GEAR::TRIANGLES, 0, mSubMeshes_[i]->mSubMeshes_[k]->buffer->getNumVertices() );
    }
}

总而言之,它与我开始使用的代码几乎相同。但现在事情对我来说更清楚了,我也可以开始支持 <translation>、<rotation> 和 <scale> 动画了。随意查看我在gear3d.de上的实现(下载 SVN 主干)

我希望这可以帮助一些人在这个精彩的主题上实施他们自己的解决方案:)

4

2 回答 2

4

看着这些图片,我的印象是,你的联合矩阵没有标准化,即左上角的 3×3 部分放大了你的网格。尝试将左上角的 3 个列向量归一化会发生什么。

如果这减少了问题,则需要调查动画系统的哪一部分导致了这种情况。

于 2011-06-25T14:56:13.380 回答
1

就我而言,所有引用都以矩阵组件为目标。这就是为什么我只插入一个矩阵分量。

你永远不会插值矩阵。曾经

通常处理这种情况的方式是,在加载动画数据时,将每个矩阵分解为四元数和位置(以及缩放,如果您正在动画缩放)。使用四元数是因为它们很小、易于插值并且插值后易于归一化。不像大的矩阵,难以插值,并且难以在之后进行正交归一化。

请注意,上述操作通常作为工具中的预处理步骤完成。该工具加载 Collada 动画,转换为四元数和位置,然后将它们写入文件格式以供以后阅读。

因此,您可以根据需要对四元数进行插值(随意使用 LERP 进行动画内插值),然后进行快速归一化。仅当位置相对于原始偏移量实际发生变化时,才需要更新位置。你将它们组合成一个矩阵,然后照常继续。

简单易行。

于 2011-06-25T19:08:52.170 回答