我正在尝试使用示例中的方式制作plotly
甘特图plotly.express
,但是plotly
会根据给定的名称以某种方式改变条形厚度(参见图片,红色>绿色>蓝色):
代码如下所示:
import pandas as pd
import plotly.express as px
df = pd.read_csv('stackoverflow.csv')
fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", color="Resource", text="Task", width=1600, height=800)
fig.update_yaxes(autorange="reversed")
fig.update_xaxes(
dtick="1000",
tickformat="%M:%S",
ticklabelmode="instant")
fig.update_layout(xaxis_range=[df.Start.min(), df.Finish.max()])
fig.show()
存在stackoverflow.csv
:
Task,Start,Finish,Workstation,Resource
1,1970-01-01 01:00:00.000,1970-01-01 01:00:05.400,1,ABL
2,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,2,ABS
3,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,3,ABU
4,1970-01-01 01:00:00.000,1970-01-01 01:00:02.000,4,ACC
5,1970-01-01 01:00:02.000,1970-01-01 01:00:03.300,4,ACC
6,1970-01-01 01:00:03.300,1970-01-01 01:00:05.300,4,ACC
7,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,5,ABS
8,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,6,ACT
9,1970-01-01 01:00:00.000,1970-01-01 01:00:02.000,7,ACC
10,1970-01-01 01:00:02.000,1970-01-01 01:00:03.300,7,ACC
11,1970-01-01 01:00:03.300,1970-01-01 01:00:05.300,7,ACC
12,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,8,ABS
13,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,9,ABU
14,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,10,ACC
15,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,11,ABS
16,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,12,ABU
17,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,13,ACC
18,1970-01-01 01:00:01.300,1970-01-01 01:00:03.300,13,ACC
19,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,14,ABS
20,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,15,ABP
21,1970-01-01 01:00:00.000,1970-01-01 01:00:01.500,16,ABZ
22,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,17,ACC
23,1970-01-01 01:00:01.300,1970-01-01 01:00:03.300,17,ACC
24,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,18,ABS
25,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,19,AAW
26,1970-01-01 01:00:00.000,1970-01-01 01:00:02.000,20,ACC
27,1970-01-01 01:00:02.000,1970-01-01 01:00:03.300,20,ACC
28,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,21,ABS
29,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,22,ABU
30,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,23,ACC
我希望所有的条都具有相同的厚度,令人惊讶的是,当我将 的名称更改Resource
为某个随机的 3 字符值时,这会起作用:
AB*
我认为这与以or开头的资源有关AC*
。不幸的是,资源的名称取决于真实世界的名称,所以我不能随意更改它们。当资源的名称类似于FooBar-Axx-FOO
with时,也会发生不同的条形厚度xx = [CC, BS, CT...]
。有谁知道为什么会发生这种情况或如何防止它?
PS:该
fig.update_xaxes(
dtick="1000",
tickformat="%M:%S")
有必要在甘特图中显示秒数而不是天数......有没有更好的方法来实现这一点?
更新:
conda
我用来创建问题的环境 yaml 文件:
name: stack
channels:
- conda-forge
- pytorch
- plotly
dependencies:
- python>=3.5,<3.8
- pandas
- pip
- pip:
- plotly
稍作修改的代码仍然产生与上图相同的问题:
import pandas as pd
import plotly.express as px
from io import StringIO
csv = """Task,Start,Finish,Workstation,Resource
1,1970-01-01 01:00:00.000,1970-01-01 01:00:05.400,1,ABL
2,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,2,ABS
3,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,3,ABU
4,1970-01-01 01:00:00.000,1970-01-01 01:00:02.000,4,ACC
5,1970-01-01 01:00:02.000,1970-01-01 01:00:03.300,4,ACC
6,1970-01-01 01:00:03.300,1970-01-01 01:00:05.300,4,ACC
7,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,5,ABS
8,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,6,ACT
9,1970-01-01 01:00:00.000,1970-01-01 01:00:02.000,7,ACC
10,1970-01-01 01:00:02.000,1970-01-01 01:00:03.300,7,ACC
11,1970-01-01 01:00:03.300,1970-01-01 01:00:05.300,7,ACC
12,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,8,ABS
13,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,9,ABU
14,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,10,ACC
15,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,11,ABS
16,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,12,ABU
17,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,13,ACC
18,1970-01-01 01:00:01.300,1970-01-01 01:00:03.300,13,ACC
19,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,14,ABS
20,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,15,ABP
21,1970-01-01 01:00:00.000,1970-01-01 01:00:01.500,16,ABZ
22,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,17,ACC
23,1970-01-01 01:00:01.300,1970-01-01 01:00:03.300,17,ACC
24,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,18,ABS
25,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,19,AAW
26,1970-01-01 01:00:00.000,1970-01-01 01:00:02.000,20,ACC
27,1970-01-01 01:00:02.000,1970-01-01 01:00:03.300,20,ACC
28,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,21,ABS
29,1970-01-01 01:00:00.000,1970-01-01 01:00:01.000,22,ABU
30,1970-01-01 01:00:00.000,1970-01-01 01:00:01.300,23,ACC"""
df = pd.read_csv(StringIO(csv))
# df = pd.read_csv("stackoverflow.csv")
fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", color="Resource", text="Task", width=1600, height=800)
fig.update_yaxes(autorange="reversed")
fig.update_xaxes(
dtick="1000",
tickformat="%M:%S",
ticklabelmode="instant")
fig.update_layout(xaxis_range=[df.Start.min(), df.Finish.max()])
fig.show()
的输出conda list
:
pip 20.2.4 py_0 conda-forge
plotly 4.12.0 pypi_0 pypi
python 3.7.8 h6f2ec95_1_cpython conda-forge