2

我正在使用 sklearn 来计算分类器的平均精度和 roc_auc,并使用 Yellowbrick 来绘制 roc_auc 和精度召回曲线。问题是这些包在两个指标中给出了不同的分数,我不知道哪一个是正确的。

使用的代码:

import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from yellowbrick.classifier import ROCAUC
from yellowbrick.classifier import PrecisionRecallCurve
from sklearn.datasets import make_classification
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score

seed = 42

# provides de data
X, y = make_classification(n_samples=1000, n_features=2, n_redundant=0,
                           n_informative=2, random_state=seed)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

clf_lr = LogisticRegression(random_state=seed)
clf_lr.fit(X_train, y_train)

y_pred = clf_lr.predict(X_test)
roc_auc = roc_auc_score(y_test, y_pred)
avg_precision = average_precision_score(y_test, y_pred)
print(f"ROC_AUC: {roc_auc}")
print(f"Average_precision: {avg_precision}")
print('='*20)

# visualizations
viz3 = ROCAUC(LogisticRegression(random_state=seed))
viz3.fit(X_train, y_train) 
viz3.score(X_test, y_test)
viz3.show()
viz4 = PrecisionRecallCurve(LogisticRegression(random_state=seed))
viz4.fit(X_train, y_train)
viz4.score(X_test, y_test)
viz4.show()

该代码产生以下输出:

如上所示,指标根据包给出不同的值。在打印语句中是由 scikit-learn 计算的值,而在图中显示的是由 Yellowbrick 计算的值的注释。

4

1 回答 1

2

由于您使用predictscikit-learn 的方法,因此您的预测y_pred是硬类成员资格,而不是概率:

np.unique(y_pred)
# array([0, 1])

但对于 ROC 和 Precision-Recall 计算,情况应该如此;您传递给这些方法的预测应该是概率,而不是硬类。从average_precision_score 文档

y_score:数组,形状 = [n_samples] 或 [n_samples, n_classes]

目标分数可以是正类的概率估计、置信度值或决策的非阈值度量(由某些分类器上的“decision_function”返回)。

其中non-thresholded意味着完全不是 hard classesroc_auc_scoredocs )的情况类似。

使用以下代码更正此问题,使 scikit-learn 结果与 Yellowbrick 返回的结果相同:

y_pred = clf_lr.predict_proba(X_test)     # get probabilities
y_prob = np.array([x[1] for x in y_pred]) # keep the prob for the positive class 1
roc_auc = roc_auc_score(y_test, y_prob)
avg_precision = average_precision_score(y_test, y_prob)
print(f"ROC_AUC: {roc_auc}")
print(f"Average_precision: {avg_precision}")

结果:

ROC_AUC: 0.9545954595459546
Average_precision: 0.9541994473779806

由于 Yellowbrick 在内部(并且透明地)处理所有这些计算细节,因此它不会受到此处手动 scikit-learn 过程中的错误的影响。


请注意,在二进制情况下(如此处),您可以(并且应该)使您的绘图不那么混乱binary=True

viz3 = ROCAUC(LogisticRegression(random_state=seed), binary=True) # similarly for the PrecisionRecall curve

并且,与人们可能直观地期望的相反,至少对于二进制情况,score方法ROCAUC不会返回 AUC,而是返回准确性,如文档所述:

viz3.score(X_test, y_test)
# 0.88

# verify this is the accuracy:

from sklearn.metrics import accuracy_score
accuracy_score(y_test, clf_lr.predict(X_test))
# 0.88
于 2020-11-02T22:29:10.500 回答