我想用这个脚本制作一个 deepdream 视频:https ://github.com/graphific/DeepDreamVideo 。我不得不对其进行一些更改,但现在我收到此错误:
Traceback (most recent call last):
File "C:\Users\Daniel\Desktop\deepdream-master\2_dreaming_time.py", line 20, in <module>
import caffe
File "C:\Users\Daniel\Desktop\deepdream-master\caffe\python\caffe\__init__.py", line 1, in <module>
from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer
File "C:\Users\Daniel\Desktop\deepdream-master\caffe\python\caffe\pycaffe.py", line 13, in <module>
from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \
ModuleNotFoundError: No module named 'caffe._caffe'
我已经安装了 caffe,pip install caffe-ssd-x86
但它并没有解决这个问题。我正在使用 Windows 10 和 Python 3.8
我现在使用的代码:
#!/usr/bin/python
__author__ = 'graphific'
import argparse
import os, os.path
import errno
import sys
import time
import subprocess
from random import randint
from io import StringIO
import numpy as np
import scipy.ndimage as nd
import PIL.Image
from google.protobuf import text_format
sys.path.insert(0, r'C:\Users\Daniel\Desktop\deepdream-master\caffe\python')
import caffe
caffe.set_mode_gpu()
def extractVideo(inputdir, outputdir):
print(subprocess.Popen('ffmpeg -i ' + inputdir + ' -f image2 ' + outputdir + '/%08d.png', shell=True,
stdout=subprocess.PIPE).stdout.read())
def showarray(a, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
def showarrayHQ(a, fmt='png'):
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
# a couple of utility functions for converting to and from Caffe's input image layout
def preprocess(net, img):
#print np.float32(img).shape
return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data']
def deprocess(net, img):
return np.dstack((img + net.transformer.mean['data'])[::-1])
def objective_L2(dst):
dst.diff[:] = dst.data
#objective for guided dreaming
def objective_guide(dst,guide_features):
x = dst.data[0].copy()
y = guide_features
ch = x.shape[0]
x = x.reshape(ch,-1)
y = y.reshape(ch,-1)
A = x.T.dot(y) # compute the matrix of dot-products with guide features
dst.diff[0].reshape(ch,-1)[:] = y[:,A.argmax(1)] # select ones that match best
#from https://github.com/jrosebr1/bat-country/blob/master/batcountry/batcountry.py
def prepare_guide(net, image, end="inception_4c/output", maxW=224, maxH=224):
# grab dimensions of input image
(w, h) = image.size
# GoogLeNet was trained on images with maximum width and heights
# of 224 pixels -- if either dimension is larger than 224 pixels,
# then we'll need to do some resizing
if h > maxH or w > maxW:
# resize based on width
if w > h:
r = maxW / float(w)
# resize based on height
else:
r = maxH / float(h)
# resize the image
(nW, nH) = (int(r * w), int(r * h))
image = np.float32(image.resize((nW, nH), PIL.Image.BILINEAR))
(src, dst) = (net.blobs["data"], net.blobs[end])
src.reshape(1, 3, nH, nW)
src.data[0] = preprocess(net, image)
net.forward(end=end)
guide_features = dst.data[0].copy()
return guide_features
# -------
# Make dreams
# -------
def make_step(net, step_size=1.5, end='inception_4c/output', jitter=32, clip=True):
'''Basic gradient ascent step.'''
src = net.blobs['data'] # input image is stored in Net's 'data' blob
dst = net.blobs[end]
ox, oy = np.random.randint(-jitter, jitter + 1, 2)
src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply jitter shift
net.forward(end=end)
dst.diff[:] = dst.data # specify the optimization objective
net.backward(start=end)
g = src.diff[0]
# apply normalized ascent step to the input image
src.data[:] += step_size / np.abs(g).mean() * g
src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image
if clip:
bias = net.transformer.mean['data']
src.data[:] = np.clip(src.data, -bias, 255-bias)
def deepdream(net, base_img, image_type, iter_n=10, octave_n=4, octave_scale=1.4, end='inception_4c/output', verbose = 1, clip=True, **step_params):
# prepare base images for all octaves
octaves = [preprocess(net, base_img)]
for i in range(octave_n - 1):
octaves.append(nd.zoom(octaves[-1], (1, 1.0 / octave_scale, 1.0 / octave_scale), order=1))
src = net.blobs['data']
detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
for octave, octave_base in enumerate(octaves[::-1]):
h, w = octave_base.shape[-2:]
if octave > 0:
# upscale details from the previous octave
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1.0 * h / h1, 1.0 * w / w1), order=1)
src.reshape(1,3,h,w) # resize the network's input image size
src.data[0] = octave_base+detail
for i in range(iter_n):
make_step(net, end=end, clip=clip, **step_params)
# visualization
vis = deprocess(net, src.data[0])
if not clip: # adjust image contrast if clipping is disabled
vis = vis * (255.0 / np.percentile(vis, 99.98))
if verbose == 3:
if image_type == "png":
showarrayHQ(vis)
elif image_type == "jpg":
showarray(vis)
print (octave, i, end, vis.shape)
clear_output(wait=True)
elif verbose == 2:
print (octave, i, end, vis.shape)
# extract details produced on the current octave
detail = src.data[0]-octave_base
# returning the resulting image
return deprocess(net, src.data[0])
# --------------
# Guided Dreaming
# --------------
def make_step_guided(net, step_size=1.5, end='inception_4c/output',
jitter=32, clip=True, objective_fn=objective_guide, **objective_params):
'''Basic gradient ascent step.'''
#if objective_fn is None:
# objective_fn = objective_L2
src = net.blobs['data'] # input image is stored in Net's 'data' blob
dst = net.blobs[end]
ox, oy = np.random.randint(-jitter, jitter+1, 2)
src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply jitter shift
net.forward(end=end)
objective_fn(dst, **objective_params) # specify the optimization objective
net.backward(start=end)
g = src.diff[0]
# apply normalized ascent step to the input image
src.data[:] += step_size/np.abs(g).mean() * g
src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image
if clip:
bias = net.transformer.mean['data']
src.data[:] = np.clip(src.data, -bias, 255-bias)
def deepdream_guided(net, base_img, image_type, iter_n=10, octave_n=4, octave_scale=1.4, end='inception_4c/output', clip=True, verbose=1, objective_fn=objective_guide, **step_params):
#if objective_fn is None:
# objective_fn = objective_L2
# prepare base images for all octaves
octaves = [preprocess(net, base_img)]
for i in range(octave_n-1):
octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
src = net.blobs['data']
detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
for octave, octave_base in enumerate(octaves[::-1]):
h, w = octave_base.shape[-2:]
if octave > 0:
# upscale details from the previous octave
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)
src.reshape(1,3,h,w) # resize the network's input image size
src.data[0] = octave_base+detail
for i in range(iter_n):
make_step_guided(net, end=end, clip=clip, objective_fn=objective_fn, **step_params)
# visualization
vis = deprocess(net, src.data[0])
if not clip: # adjust image contrast if clipping is disabled
vis = vis*(255.0/np.percentile(vis, 99.98))
if verbose == 3:
if image_type == "png":
showarrayHQ(vis)
elif image_type == "jpg":
showarray(vis)
print(octave, i, end, vis.shape)
clear_output(wait=True)
elif verbose == 2:
print(octave, i, end, vis.shape)
# extract details produced on the current octave
detail = src.data[0]-octave_base
# returning the resulting image
return deprocess(net, src.data[0])
def resizePicture(image,width):
img = PIL.Image.open(image)
basewidth = width
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
return img.resize((basewidth,hsize), PIL.Image.ANTIALIAS)
def morphPicture(filename1,filename2,blend,width):
img1 = PIL.Image.open(filename1)
img2 = PIL.Image.open(filename2)
if width != 0:
img2 = resizePicture(filename2,width)
return PIL.Image.blend(img1, img2, blend)
def make_sure_path_exists(path):
'''
make sure input and output directory exist, if not create them.
If another error (permission denied) throw an error.
'''
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
layersloop = ['inception_4c/output', 'inception_4d/output',
'inception_4e/output', 'inception_5a/output',
'inception_5b/output', 'inception_5a/output',
'inception_4e/output', 'inception_4d/output',
'inception_4c/output']
def main(input, output, image_type, gpu, model_path, model_name, preview, octaves, octave_scale, iterations, jitter, zoom, stepsize, blend, layers, guide_image, start_frame, end_frame, verbose):
make_sure_path_exists(input)
make_sure_path_exists(output)
# let max nr of frames
nrframes =len([name for name in os.listdir(input) if os.path.isfile(os.path.join(input, name))])
if nrframes == 0:
print("no frames to process found")
sys.exit(0)
if preview is None: preview = 0
if octaves is None: octaves = 4
if octave_scale is None: octave_scale = 1.5
if iterations is None: iterations = 5
if jitter is None: jitter = 32
if zoom is None: zoom = 1
if stepsize is None: stepsize = 1.5
if blend is None: blend = 0.5 #can be nr (constant), random, or loop
if verbose is None: verbose = 1
if layers is None: layers = 'customloop' #['inception_4c/output']
if start_frame is None:
frame_i = 1
else:
frame_i = int(start_frame)
if not end_frame is None:
nrframes = int(end_frame)+1
else:
nrframes = nrframes+1
#Load DNN
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + model_name #'bvlc_googlenet.caffemodel'
if gpu is None:
print("SHITTTTTTTTTTTTTT You're running CPU man =D")
else:
caffe.set_mode_gpu()
caffe.set_device(int(args.gpu))
print(("GPU mode [device id: %s]" % args.gpu))
print("using GPU, but you'd still better make a cup of coffee")
# Patching model to be able to compute gradients.
# Note that you can also manually add "force_backward: true" line to "deploy.prototxt".
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
open('tmp.prototxt', 'w').write(str(model))
net = caffe.Classifier('tmp.prototxt', param_fn,
mean = np.float32([104.0, 116.0, 122.0]), # ImageNet mean, training set dependent
channel_swap = (2,1,0)) # the reference model has channels in BGR order instead of RGB
if verbose == 3:
from IPython.display import clear_output, Image, display
print("display turned on")
frame = np.float32(PIL.Image.open(input + '/%08d.%s' % (frame_i, image_type) ))
if preview != 0:
frame = np.float32(resizePicture(input + '/%08d.%s' % (frame_i, image_type), preview))
now = time.time()
totaltime = 0
if blend == 'loop':
blend_forward = True
blend_at = 0.4
blend_step = 0.1
for i in range(frame_i, nrframes):
print(('Processing frame #{}').format(frame_i))
#Choosing Layer
if layers == 'customloop': #loop over layers as set in layersloop array
endparam = layersloop[frame_i % len(layersloop)]
else: #loop through layers one at a time until this specific layer
endparam = layers[frame_i % len(layers)]
#Choosing between normal dreaming, and guided dreaming
if guide_image is None:
frame = deepdream(net, frame, image_type=image_type, verbose=verbose, iter_n = iterations, step_size = stepsize, octave_n = octaves, octave_scale = octave_scale, jitter=jitter, end = endparam)
else:
guide = np.float32(PIL.Image.open(guide_image))
print('Setting up Guide with selected image')
guide_features = prepare_guide(net,PIL.Image.open(guide_image), end=endparam)
frame = deepdream_guided(net, frame, image_type=image_type, verbose=verbose, iter_n = iterations, step_size = stepsize, octave_n = octaves, octave_scale = octave_scale, jitter=jitter, end = endparam, objective_fn=objective_guide, guide_features=guide_features,)
saveframe = output + "/%08d.%s" % (frame_i, image_type)
later = time.time()
difference = int(later - now)
totaltime += difference
avgtime = (totaltime / i)
# Stats (stolen + adapted from Samim: https://github.com/samim23/DeepDreamAnim/blob/master/dreamer.py)
print('***************************************')
print('Saving Image As: ' + saveframe)
print('Frame ' + str(i) + ' of ' + str(nrframes-1))
print('Frame Time: ' + str(difference) + 's')
timeleft = avgtime * ((nrframes-1) - frame_i)
m, s = divmod(timeleft, 60)
h, m = divmod(m, 60)
print('Estimated Total Time Remaining: ' + str(timeleft) + 's (' + "%d:%02d:%02d" % (h, m, s) + ')')
print('***************************************')
PIL.Image.fromarray(np.uint8(frame)).save(saveframe)
newframe = input + "/%08d.%s" % (frame_i,image_type)
if blend == 0:
newimg = PIL.Image.open(newframe)
if preview != 0:
newimg = resizePicture(newframe,preview)
frame = newimg
else:
if blend == 'random':
blendval=randint(5,10)/10.
elif blend == 'loop':
if blend_at > 1 - blend_step: blend_forward = False
elif blend_at <= 0.5: blend_forward = True
if blend_forward: blend_at += blend_step
else: blend_at -= blend_step
blendval = blend_at
else: blendval = float(blend)
frame = morphPicture(saveframe,newframe,blendval,preview)
frame = np.float32(frame)
now = time.time()
frame_i += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Dreaming in videos.')
parser.add_argument(
'-i','--input',
help='Input directory where extracted frames are stored',
required=True)
parser.add_argument(
'-o','--output',
help='Output directory where processed frames are to be stored',
required=True)
parser.add_argument(
'-it','--image_type',
help='Specify whether jpg or png ',
required=True)
parser.add_argument(
"--gpu",
default= None,
help="Switch for gpu computation."
) #int can chose index of gpu, if there are multiple gpu's to chose from
parser.add_argument(
'-t', '--model_path',
dest='model_path',
default='../caffe/models/bvlc_googlenet/',
help='Model directory to use')
parser.add_argument(
'-m', '--model_name',
dest='model_name',
default='bvlc_googlenet.caffemodel',
help='Caffe Model name to use')
parser.add_argument(
'-p','--preview',
type=int,
required=False,
help='Preview image width. Default: 0')
parser.add_argument(
'-oct','--octaves',
type=int,
required=False,
help='Octaves. Default: 4')
parser.add_argument(
'-octs','--octavescale',
type=float,
required=False,
help='Octave Scale. Default: 1.4',)
parser.add_argument(
'-itr','--iterations',
type=int,
required=False,
help='Iterations. Default: 10')
parser.add_argument(
'-j','--jitter',
type=int,
required=False,
help='Jitter. Default: 32')
parser.add_argument(
'-z','--zoom',
type=int,
required=False,
help='Zoom in Amount. Default: 1')
parser.add_argument(
'-s','--stepsize',
type=float,
required=False,
help='Step Size. Default: 1.5')
parser.add_argument(
'-b','--blend',
type=str,
required=False,
help='Blend Amount. Default: "0.5" (constant), or "loop" (0.5-1.0), or "random"')
parser.add_argument(
'-l','--layers',
nargs="+",
type=str,
required=False,
help='Array of Layers to loop through. Default: [customloop] \
- or choose ie [inception_4c/output] for that single layer')
parser.add_argument(
'-v', '--verbose',
type=int,
required=False,
help="verbosity [0-3]")
parser.add_argument(
'-gi', '--guide_image',
required=False,
help="path to guide image")
parser.add_argument(
'-sf', '--start_frame',
type=int,
required=False,
help="starting frame nr")
parser.add_argument(
'-ef', '--end_frame',
type=int,
required=False,
help="end frame nr")
parser.add_argument(
'-e', '--extract',
type=int,
required=False,
help="Extract frames from video")
args = parser.parse_args()
if not args.model_path[-1] == '/':
args.model_path = args.model_path + '/'
if not os.path.exists(args.model_path):
print("Model directory not found")
print("Please set the model_path to a correct caffe model directory")
sys.exit(0)
model = os.path.join(args.model_path, args.model_name)
if not os.path.exists(model):
print("Model not found")
print("Please set the model_name to a correct caffe model")
print("or download one with ./caffe_dir/scripts/download_model_binary.py caffe_dir/models/bvlc_googlenet")
sys.exit(0)
if args.extract == 1:
extractVideo(args.input, args.output)
else:
main(args.input, args.output, args.image_type, args.gpu, args.model_path, args.model_name, args.preview, args.octaves, args.octavescale, args.iterations, args.jitter, args.zoom, args.stepsize, args.blend, args.layers, args.guide_image, args.start_frame, args.end_frame, args.verbose)
你对这个问题有什么解决方案吗?我在谷歌上搜索答案,但找不到任何答案,在此先感谢您的帮助!