1

我正在使用 Pyspark 2.4.4。

我想将 s3 存储桶中的一些镶木地板文件加载到 spark 数据框中,并且我想一次读取所有这些文件。

我一直在寻找如何在这些链接中做到这一点:

我尝试了多种方式,但无法加载文件,例如:

import os
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import pandas as pd
import databricks.koalas as ks
import boto3
from boto3.session import Session
import botocore
from zipfile import ZipFile
import urllib
import datetime
import os
from s3fs import S3FileSystem
import dask.dataframe as dd

aws_region = 'ap-southeast-1'

# Create Spark config for our Kubernetes based cluster manager
sparkConf = SparkConf()
sparkConf.setMaster("k8s://https://kubernetes.default.svc.cluster.local:443")
sparkConf.setAppName("spark")

sparkConf.set("spark.kubernetes.container.image", "<myimage>")
sparkConf.set("spark.kubernetes.container.image.pullSecrets", "<secret>")

sparkConf.set("spark.kubernetes.namespace", "spark")
sparkConf.set("spark.executor.instances", "3")
sparkConf.set("spark.executor.cores", "1")
sparkConf.set("spark.driver.memory", "512m")
sparkConf.set("spark.executor.memory", "512m")
sparkConf.set("spark.kubernetes.pyspark.pythonVersion", "3")
sparkConf.set("spark.kubernetes.authenticate.driver.serviceAccountName", "spark")
sparkConf.set("spark.kubernetes.authenticate.serviceAccountName", "spark")
sparkConf.set("spark.driver.port", "29413")
sparkConf.set("spark.driver.host", "<HOST>")
sparkConf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
sparkConf.set("com.amazonaws.services.s3.enableV4", "true")
sparkConf.set("fs.s3a.access.key", "<mykey>")
sparkConf.set("fs.s3a.secret.key", "<mysecret>")
sparkConf.set("fs.s3a.connection.maximum", "100000")
# see https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
sparkConf.set("fs.s3a.endpoint", "s3." + aws_region + ".amazonaws.com")
# Initialize our Spark cluster, this will actually
# generate the worker nodes.
spark = SparkSession.builder.config(conf=sparkConf).getOrCreate()
sc = spark.sparkContext

df = spark.read.parquet(f"s3a://<path>")

我也试过:

import os
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import pandas as pd
import databricks.koalas as ks
import boto3
from boto3.session import Session
import botocore
from zipfile import ZipFile
import urllib
import datetime
import os
from s3fs import S3FileSystem
import dask.dataframe as dd

aws_region = 'ap-southeast-1'

# Create Spark config for our Kubernetes based cluster manager
sparkConf = SparkConf()
sparkConf.setMaster("k8s://https://kubernetes.default.svc.cluster.local:443")
sparkConf.setAppName("spark")

sparkConf.set("spark.kubernetes.container.image", "<myimage>")
sparkConf.set("spark.kubernetes.container.image.pullSecrets", "<secret>")

sparkConf.set("spark.kubernetes.namespace", "spark")
sparkConf.set("spark.executor.instances", "3")
sparkConf.set("spark.executor.cores", "1")
sparkConf.set("spark.driver.memory", "512m")
sparkConf.set("spark.executor.memory", "512m")
sparkConf.set("spark.kubernetes.pyspark.pythonVersion", "3")
sparkConf.set("spark.kubernetes.authenticate.driver.serviceAccountName", "spark")
sparkConf.set("spark.kubernetes.authenticate.serviceAccountName", "spark")
sparkConf.set("spark.driver.port", "29413")
sparkConf.set("spark.driver.host", "<HOST>")

# Initialize our Spark cluster, this will actually
# generate the worker nodes.
spark = SparkSession.builder.config(conf=sparkConf).getOrCreate()
sc = spark.sparkContext

sc.setSystemProperty("com.amazonaws.services.s3.enableV4", "true")
hadoop_conf=sc._jsc.hadoopConfiguration()
aws_region = 'ap-southeast-1'
# see https://stackoverflow.com/questions/43454117/how-do-you-use-s3a-with-spark-2-1-0-on-aws-us-east-2
hadoop_conf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
hadoop_conf.set("com.amazonaws.services.s3.enableV4", "true")
hadoop_conf.set("fs.s3a.access.key", "<KEY>")
hadoop_conf.set("fs.s3a.secret.key", "<SECRET>")
hadoop_conf.set("fs.s3a.connection.maximum", "100000")
# see https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
hadoop_conf.set("fs.s3a.endpoint", "s3." + aws_region + ".amazonaws.com")

import pyspark
date = datetime.datetime.today() - datetime.timedelta(days=2)
path = '<path>'
sql=pyspark.sql.SparkSession(sc)
sc.parquet("s3a://" + path)

但我有这个错误:

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-6-14c1e166e21f> in <module>
      1 date = datetime.datetime.today() - datetime.timedelta(days=2)
----> 2 df = spark.read.parquet(f"s3a://cp-datadumps/MCF/2020/10/17/advances/advances.parquet_0_0_0.snappy.parquet")

/usr/local/spark/python/pyspark/sql/readwriter.py in parquet(self, *paths)
    314         [('name', 'string'), ('year', 'int'), ('month', 'int'), ('day', 'int')]
    315         """
--> 316         return self._df(self._jreader.parquet(_to_seq(self._spark._sc, paths)))
    317 
    318     @ignore_unicode_prefix

/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1255         answer = self.gateway_client.send_command(command)
   1256         return_value = get_return_value(
-> 1257             answer, self.gateway_client, self.target_id, self.name)
   1258 
   1259         for temp_arg in temp_args:

/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling o209.parquet.
: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
    at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2195)
    at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2654)
    at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667)
    at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
    at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
    at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
    at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
    at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
    at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:547)
    at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:545)
    at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
    at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
    at scala.collection.immutable.List.foreach(List.scala:392)
    at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
    at scala.collection.immutable.List.flatMap(List.scala:355)
    at org.apache.spark.sql.execution.datasources.DataSource.org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary(DataSource.scala:545)
    at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:359)
    at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
    at org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:644)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
    at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2101)
    at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2193)
    ... 30 more

我知道路径是正确的,因为使用 das 我能够加载数据:`

storage_options = {
                    "key": "<MYKEY>",
                    "secret": "<MYSECRET>",
                    }
    s3 = S3FileSystem(**storage_options)
    s3.invalidate_cache()

df1 = dd.read_parquet(f"s3://<path>", storage_options=storage_options)
4

1 回答 1

2

该问题隐藏在 Java 堆栈跟踪的末尾,并且独立于 Parquet 文件。缺少的是 S3A 文件系统所需的库不可用。

java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found

您需要确保 hadoop-aws JAR 在类路径中。此 JAR 包含org.apache.hadoop.fs.s3a.S3AFileSystem在上述代码中找不到的类。

有关这些 JAR 的更多信息,请访问https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html#Getting_Started

于 2020-10-19T18:52:05.563 回答