我想你可以这样重写它。我做了一些调整来帮助你。
set.seed(1)
df <- data.frame(Date = sort(sample(seq(as.Date('2018/01/01'), as.Date('2020/09/17'), by="day"),1368883, replace = T)))
event_analysis <- function(data, eventdate, period, title){
# in the future, you may think to move them out
library(dplyr)
library(tsibble)
library(fable)
library(fabletools)
library(imputeTS)
library(ggplot2)
# convert at the beginning
eventdate <- as.Date(eventdate)
# more compact sintax
data_count <- count(data, Date, name = "Count")
# better specify the date variable to avoid the message
data_count <- as_tsibble(data_count, index = Date)
# you need to complete missing dates, just in case
data_count <- tsibble::fill_gaps(data_count)
data_count <- na_mean(data_count)
train <- data_count %>%
filter(Date <= eventdate)
test <- data_count %>%
filter(Date > eventdate, Date <= (eventdate+period))
fit <- train %>%
model(
ets = ETS(Count),
arima = ARIMA(Count),
snaive = SNAIVE(Count)
) %>%
mutate(mixed = (ets + arima + snaive) / 3)
fc <- fit %>% forecast(h = period)
# your plot
forecastplot <- fc %>%
autoplot(data_count, level = NULL) +
ggtitle(title) +
geom_vline(xintercept = as.Date(eventdate), linetype = "dashed", color = "red") +
labs(caption = "Red dashed line = Event occurrence")
# plot just forecast and test
zoomfcstplot <- autoplot(fc) + autolayer(test, .vars = Count)
fc_accuracy <- accuracy(fc,data_count)
### EDIT: ###
# results vs test
res <- fc %>%
as_tibble() %>%
select(-Count) %>%
tidyr::pivot_wider(names_from = .model, values_from = .mean) %>%
inner_join(test, by = "Date")
##############
return(list(forecastplot = forecastplot,
zoomplot = zoomfcstplot,
accuracy = fc_accuracy,
forecast = fc,
results = res))
}
event_analysis(df,
eventdate = "2020-01-01",
period = 21,
title = "Event forecast")
输出:
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#> Carico il pacchetto richiesto: fabletools
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
#> $forecastplot
#>
#> $zoomplot
#>
#> $accuracy
#> # A tibble: 4 x 9
#> .model .type ME RMSE MAE MPE MAPE MASE ACF1
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 arima Test -16.8 41.8 35.2 -1.31 2.61 0.791 0.164
#> 2 ets Test -16.8 41.8 35.2 -1.31 2.61 0.791 0.164
#> 3 mixed Test -21.9 44.7 36.8 -1.68 2.73 0.825 -0.0682
#> 4 snaive Test -32.1 57.3 46.6 -2.43 3.45 1.05 -0.377
#>
#> $forecast
#> # A fable: 84 x 4 [1D]
#> # Key: .model [4]
#> .model Date Count .mean
#> <chr> <date> <dist> <dbl>
#> 1 ets 2020-01-02 N(1383, 1505) 1383.
#> 2 ets 2020-01-03 N(1383, 1505) 1383.
#> 3 ets 2020-01-04 N(1383, 1505) 1383.
#> 4 ets 2020-01-05 N(1383, 1505) 1383.
#> 5 ets 2020-01-06 N(1383, 1505) 1383.
#> 6 ets 2020-01-07 N(1383, 1505) 1383.
#> 7 ets 2020-01-08 N(1383, 1505) 1383.
#> 8 ets 2020-01-09 N(1383, 1505) 1383.
#> 9 ets 2020-01-10 N(1383, 1505) 1383.
#> 10 ets 2020-01-11 N(1383, 1505) 1383.
#> # ... with 74 more rows
#>
#> $results
#> # A tibble: 21 x 6
#> Date ets arima snaive mixed Count
#> <date> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 2020-01-02 1383. 1383. 1386 1384. 1350
#> 2 2020-01-03 1383. 1383. 1366 1377. 1398
#> 3 2020-01-04 1383. 1383. 1426 1397. 1357
#> 4 2020-01-05 1383. 1383. 1398 1388. 1415
#> 5 2020-01-06 1383. 1383. 1431 1399. 1399
#> 6 2020-01-07 1383. 1383. 1431 1399. 1346
#> 7 2020-01-08 1383. 1383. 1350 1372. 1299
#> 8 2020-01-09 1383. 1383. 1386 1384. 1303
#> 9 2020-01-10 1383. 1383. 1366 1377. 1365
#> 10 2020-01-11 1383. 1383. 1426 1397. 1328
#> # ... with 11 more rows