0

我正在研究N = 30个国家和T = 15年的面板数据集。我正在使用Rplm包进行分析。根据Blundell-Bond (1998)Arellano-Bover (1995)的研究,我决定使用 System-GMM 单步模型,仅具有个体效应。但是,我对如何使用该pgmm函数有点困惑,这需要一个多部分公式来指定具有 IV 的模型以及我得到的 Sargan-Hansen 测试结果。为了更清楚,这里有一些我试过的代码示例,估计的结果和sargan测试。在我的模型中,我考虑了滞后因变量和外生回归变量。为了避免我的帖子太长,我只是尽可能地整理报告模型代码和主要结果:

sy_gmm1 <- pgmm(log(GWPcap) ~ lag(log(GWPcap)) + log(GDPcap)|lag(log(GWPcap),2:15) + log(GDPcap), data = europanel, 
                index = c("country","year"), model = "onestep", effect = "individual", transformation = "ld")
        
sy_gmm2 <- pgmm(log(GWPcap) ~ lag(log(GWPcap)) + log(GDPcap)|lag(log(GWPcap),2:15) | log(GDPcap), data = europanel, 
                index = c("country","year"), model = "onestep", effect = "individual", transformation = "ld")
        
sy_gmm3 <- pgmm(log(GWPcap) ~ lag(log(GWPcap)) + log(GDPcap) | lag(log(GWPcap),2) + log(GDPcap), data = europanel, 
                index = c("country","year"), model = "onestep", effect = "individual", transformation = "ld")
        
sy_gmm4 <- pgmm(log(GWPcap) ~ lag(log(GWPcap)) + log(GDPcap)|lag(log(GWPcap),2) | log(GDPcap), data = europanel, 
                index = c("country","year"), model = "onestep", effect = "individual", transformation = "ld")
        
sy_gmm5 <- pgmm(log(GWPcap) ~ lag(log(GWPcap)) + log(GDPcap) | lag(log(GWPcap),2) + lag(log(GDPcap),1:2), data = europanel, 
                index = c("country","year"), model = "onestep", effect = "individual", transformation = "ld")
        
sy_gmm6 <- pgmm(log(GWPcap) ~ lag(log(GWPcap)) + log(GDPcap)|lag(log(GWPcap),2) | lag(log(GDPcap),1:2), data = europanel, 
                index = c("country","year"), model = "onestep", effect = "individual", transformation = "ld")

# Coefficients and p-values of estimates
  
                   Estimate       p.value Model
lag(log(GWPcap)) 0.90340911  1.525370e-86     1
log(GDPcap)      0.06214275  1.965823e-02     1
lag(log(GWPcap)) 0.97250426  0.000000e+00     2
log(GDPcap)      0.02222075  1.383774e-01     2
lag(log(GWPcap)) 0.81905400  2.615214e-47     3
log(GDPcap)      0.10822697  8.291284e-04     3
lag(log(GWPcap)) 0.82343976  4.873484e-16     4
log(GDPcap)      0.11164469  7.294118e-02     4
lag(log(GWPcap)) 0.84762245  2.754039e-87     5
log(GDPcap)      0.09281759  1.636567e-04     5
lag(log(GWPcap)) 0.86280993 3.843798e-104     6
log(GDPcap)      0.08809634  3.325890e-04     6

# Sargan test
                stat  df   p.value
    sargan1 30.00000 128 1.0000000
    sargan2 30.00000 104 1.0000000
    sargan3 30.00000  50 0.9888352
    sargan4 29.64127  26 0.2827384
    sargan5 30.00000  63 0.9998660
    sargan6 30.00000  28 0.3632178

正如您在模型 2、4 和 6 中看到的,我将外生回归log(GDPcap)量放在公式的第三部分,将其与滞后的依赖工具分开。我不知道这是否是设置公式的正确方法,因为在 R 文档中指定“普通仪器”需要它。这是什么意思?考虑到这个疑问,我想在模型 6 中做一个实验,使用lag(log(GDPcap))和我在估计中得到的结果log(GDPcap)是显着的,并且在 Sargan 测试中它们似乎显然是好的。

此外,我注意到我在 Sargan 测试中得到的不同结果,特别是关于自由度,这与我使用的仪器数量和 p 值非常相关。根据我所阅读的内容,使用过多的仪器可能是一把双刃剑,尤其是考虑到我的样本量,并且 Sargan-Hansen 检验可能会受到影响,给出过高的 p 值。所以我的问题是这六个模型中哪一个写得对,我应该如何解释我得到的结果,无论是在估计(在某些模型中外生回归量不显着)还是在测试中?

我希望我很清楚,有人可以解决我的疑问。提前致谢。

4

0 回答 0