网络上的数据源/文件位置是:https : //www.newyorkfed.org/medialibrary/media/survey/empire/data/esms_seasonallyadjusted_diffusion.csv 但是由于存在连接问题,我保存了它('esms_seasonallyadjusted_diffusion.csv')无论如何,在本地这是最好的速度,我也将它保存到 github: https://github.com/me50/hlar65/blob/master/ESMS_SeasonallyAdjusted_Diffusion.csv')
2个问题:
- 尝试访问网络链接时(即使单击它会下载文件)我收到连接错误:“URLError: <urlopen error Tunnel connection failed: 403 Forbidden>”
- 我的代码(我是初学者!)看起来很笨拙。有没有更干净更好的表达方式?
谢谢大家的帮助'''
import pandas as pd
import numpy as np
from pandas.plotting import scatter_matrix
import scipy as sp
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sn
df = dd.read_csv('https://www.newyorkfed.org/medialibrary/media/survey/empire/data/esms_seasonallyadjusted_diffusion.csv')
df = df.rename(columns={'surveyDate':'Date',
'GACDISA': 'IndexAll',
'NECDISA': 'NumberofEmployees',
'NOCDISA': 'NewOrders',
'PPCDISA': 'PricesPaid',
'PRCDISA': 'PricesReceived'})
headers = df.columns
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
IndexAll = df['IndexAll']
NumberofEmployees = df['NumberofEmployees']
NewOrders = df['NewOrders']
PricesReceived = df['PricesReceived']
data = df[['IndexAll', 'NumberofEmployees', 'NewOrders', 'PricesReceived']]
data2 = data.copy()
ds = data2
FS_A = 14
FS_L = 16
FS_T = 20
FS_MT = 25
fig, ((ax0, ax1), (ax2,ax3)) = plt.subplots(nrows=2, ncols=2, figsize=(20,15))
# density=True : probability density i.e. prb of an outcome; False = actual # of frequency
ds['IndexAll'].plot(ax=ax0, color='red')
ax0.set_title('New York Empire Manufacturing Index', fontsize = FS_T)
ax0.set_ylabel('Date', fontsize = FS_A)
ax0.set_xlabel('Empire Index', fontsize = FS_L)
ax0.tick_params(labelsize=FS_A)
ds['NumberofEmployees'].plot(ax=ax1, color='blue')
ax1.set_title('Empire: Number of Employees', fontsize = FS_T)
ax1.set_ylabel('Date', fontsize = FS_L)
ax1.set_xlabel('Number of Employees', fontsize = FS_L)
ax1.tick_params(labelsize=FS_A)
ds['NewOrders'].plot(ax=ax2, color='green')
ax2.set_title('Empire: New Orders', fontsize = FS_T)
ax2.set_ylabel('Date', fontsize = FS_L)
ax2.set_xlabel('New Orders', fontsize = FS_L)
ax2.tick_params(labelsize=FS_A)
ds['PricesReceived'].plot(ax=ax3, color='black')
ax3.set_title('Empire: Prices Received', fontsize = FS_T)
ax3.set_ylabel('Date', fontsize = FS_L)
ax3.set_xlabel('Prices Received', fontsize = FS_L)
ax3.tick_params(labelsize=FS_A)
fig.tight_layout()
fig.suptitle('New York Manufacturing Index Main Components - Showing the Depths of COVD19 in 2020', fontsize = FS_MT)
fig.tight_layout()
fig.subplots_adjust(top=0.88)
fig.subplots_adjust(bottom = -0.2)
fig.savefig("Empire.png")
plt.show()
'''