我正在使用 tidymodels 来拟合 PLS 模型,但我很难找到 PLS 变量重要性分数或系数。
到目前为止,这是我尝试过的;示例数据来自 AppliedPredictiveModeling 包。
造型拟合
data(ChemicalManufacturingProcess)
split <- ChemicalManufacturingProcess %>% initial_split(prop = 0.7)
train <- training(split)
test <- testing(split)
tidy_rec <- recipe(Yield ~ ., data = train) %>%
step_knnimpute(all_predictors()) %>%
step_BoxCox(all_predictors()) %>%
step_normalize(all_predictors()) %>%
step_nzv(all_predictors()) %>%
step_corr(all_predictors())
boots <- bootstraps(time = 25, data = train)
tidy_model <- plsmod::pls(num_comp = tune()) %>%
set_mode("regression") %>%
set_engine("mixOmics")
tidy_grid <- expand.grid(num_comp = seq(from = 1, to = 48, by = 5))
tidy_tune <- tidy_model %>% tune_grid(
preprocessor = tidy_rec,
grid = tidy_grid,
resamples = boots,
metrics = metric_set(mae, rmse, rsq)
)
tidy_best <- tidy_tune %>% select_best("rsq")
Final_model <- tidy_model %>% finalize_model(tidy_best)
tidy_wf <- workflow() %>%
add_model(Final_model) %>%
add_recipe(tidy_rec)
Fit_PLS <- tidy_wf %>% fit(data = train)
# check the most important predictors
tidy_info <- Fit_PLS %>% pull_workflow_fit()
loadings <- tidy_info$fit$loadings$X
PLS 变量重要性
tidy_load <- loadings %>% as.data.frame() %>% rownames_to_column() %>%
select(rowname, comp1, comp2, comp3) %>%
pivot_longer(-rowname) %>%
rename(predictors = rowname)
tidy_load %>% mutate(Sing = if_else(value < 0, "neg", "pos")) %>%
mutate(absvalue = abs(value)) %>% group_by(predictors) %>% summarise(Importance = sum(absvalue)) %>%
mutate(predictors = fct_reorder(predictors, Importance)) %>%
slice_head(n = 15) %>%
ggplot(aes(Importance, predictors, fill = predictors)) + geom_col(show.legend = F)
谢谢!vip 包中的vi()
功能不适用于此型号。