是否可以使用 Keras 调谐器使用 Time Series Split 调整 NN,类似于 sklearn.model_selection.TimeSeriesSplit 中的 sklearn.model_selection.TimeSeriesSplit。
例如,考虑来自https://towardsdatascience.com/hyperparameter-tuning-with-keras-tuner-283474fbfbe的示例调谐器类
from kerastuner import HyperModel
class SampleModel(HyperModel):
def __init__(self, input_shape):
self.input_shape = input_shape
def build(self, hp):
model = Sequential()
model.add(
layers.Dense(
units=hp.Int('units', 8, 64, 4, default=8),
activation=hp.Choice(
'dense_activation',
values=['relu', 'tanh', 'sigmoid'],
default='relu'),
input_shape=input_shape
)
)
model.add(layers.Dense(1))
model.compile(
optimizer='rmsprop',loss='mse',metrics=['mse']
)
return model
调谐器:
tuner_rs = RandomSearch(
hypermodel,
objective='mse',
seed=42,
max_trials=10,
executions_per_trial=2)
tuner_rs.search(x_train_scaled, y_train, epochs=10, validation_split=0.2, verbose=0)
因此validation_split = 0.2
,在上面的行中,可以执行以下操作而不是
from sklearn.model_selection import TimeSeriesSplit
#defining a time series split object
tscv = TimeSeriesSplit(n_splits = 5)
#using that in Keras Tuner
tuner_rs.search(x_train, y_train, epochs=10, validation_split=tscv, verbose=0)