0

我正在尝试运行 oneAPI 的 hello-world DPC++ 示例,该示例在 CPU 和 GPU 上添加两个一维数组,并验证结果。代码如下所示:

/*
DataParallel Addition of two Vectors
*/

#include <CL/sycl.hpp>
#include <array>
#include <iostream>
using namespace sycl;

constexpr size_t array_size = 100000;
typedef std::array<int, array_size> IntArray;

// Initialize array with the same value as its index
void InitializeArray(IntArray& a) { for (size_t i = 0; i < a.size(); i++) a[i] = i; }

/*
Create an asynchronous Exception Handler for sycl
*/
static auto exception_handler = [](cl::sycl::exception_list eList) {
    for (std::exception_ptr const& e : eList) {
        try {
            std::rethrow_exception(e);
        }
        catch (std::exception const& e) {
            std::cout << "Failure" << std::endl;
            std::terminate();
        }
    }
};

void VectorAddParallel(queue &q, const IntArray& x, const IntArray& y, IntArray& parallel_sum) {
    range<1> num_items{ x.size() };
    
    buffer x_buf(x);
    buffer y_buf(y);
    buffer sum_buf(parallel_sum.data(), num_items);

    /*
    Submit a command group to the queue by a lambda
    which contains data access permissions and device computation
    */
    q.submit([&](handler& h) {

        auto xa = x_buf.get_access<access::mode::read>(h);
        auto ya = y_buf.get_access<access::mode::read>(h);
        auto sa = sum_buf.get_access<access::mode::write>(h);

        std::cout << "Adding on GPU (Parallel)\n";
        h.parallel_for(num_items, [=](id<1> i) { sa[i] = xa[i] + ya[i]; });
        std::cout << "Done on GPU (Parallel)\n";
    });

    /*
    queue runs the kernel asynchronously. Once beyond the scope,
    buffers' data is copied back to the host.
    */
}

int main() {
    default_selector d_selector;
    IntArray a, b, sequential, parallel;

    InitializeArray(a);
    InitializeArray(b);

    try {
        // Queue needs: Device and Exception handler
        queue q(d_selector, exception_handler);
        
        std::cout << "Accelerator: " 
                  << q.get_device().get_info<info::device::name>() << "\n";
        std::cout << "Vector size: " << a.size() << "\n";
        VectorAddParallel(q, a, b, parallel);
    }
    catch (std::exception const& e) {
        std::cout << "Exception while creating Queue. Terminating...\n";
        std::terminate();
    }
    
    /*
    Do the sequential, which is supposed to be slow
    */
    std::cout << "Adding on CPU (Scalar)\n";
    for (size_t i = 0; i < sequential.size(); i++) {
        sequential[i] = a[i] + b[i];
    }
    std::cout << "Done on CPU (Scalar)\n";
    
    /*
    Verify results, the old-school way
    */
    for (size_t i = 0; i < parallel.size(); i++) {
        if (parallel[i] != sequential[i]) {
            std::cout << "Fail: " << parallel[i] << " != " << sequential[i] << std::endl;
            std::cout << "Failed. Results do not match.\n";
            return -1;
        }
    }
    std::cout << "Success!\n";
    return 0;
}

使用相对较小的array_size,(我测试了 100-50k 个元素)计算结果很好。样本输出:

Accelerator: Intel(R) Gen9
Vector size: 50000
Adding on GPU (Parallel)
Done on GPU (Parallel)
Adding on CPU (Scalar)
Done on CPU (Scalar)
Success!

可以注意到,在 CPU 和 GPU 上完成计算只需要一秒钟。但是当我增加array_size, 说,100000我得到这个看似毫无头绪的错误:

C:\Users\myuser\source\repos\dpcpp-iotas\x64\Debug\dpcpp-iotas.exe (process 24472) exited with code -1073741571.

虽然我不确定错误开始发生的精确值是多少,但我似乎确信它会在70000. 我似乎不知道为什么会发生这种情况,对可能出现什么问题有任何见解吗?

4

2 回答 2

1

事实证明,这是由于 VS 的堆栈大小增强。具有太多元素的连续数组导致堆栈溢出。

正如@user4581301 所提到的,-107374171十六进制的错误代码给出了C00000FD,这是 Visual Studio 中“堆栈耗尽/溢出”的签名表示。

解决此问题的方法:

  1. 在 Project Properties > Linker > System > Stack Reserve/Commit 值中将/STACK保留增加到 1MB 以上(这是默认值)。
  2. 使用二进制编辑器(editbin.exe 和 dumpbin.exe)编辑/STACK:reserve.
  3. 改为使用std::vector,它允许动态分配(@Retired Ninja 建议)。

我找不到/STACK在 oneAPI 中更改的选项,这是链接器属性中的正常方式,显示在此处

我决定采用动态分配。

相关:https ://stackoverflow.com/a/26311584/9230398

于 2020-10-04T09:26:14.203 回答
0

当我编写大型应用程序时,我总是做一个

ulimit -s unlimited

向 shell 解释我已经长大了,我真的想要我的堆栈上的一些空间。

这是bash语法,但您显然可以适应其他一些 shell。

我想非 UNIX 操作系统可能有一个等价物?

于 2020-10-19T16:45:02.930 回答