基于 Spark 3.0 中的介绍,https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html。应该可以设置“kafka.group.id”来跟踪偏移量。对于我们的用例,如果流式 Spark 作业失败并重新启动,我想避免潜在的数据丢失。根据我之前的问题,我觉得 Spark 3.0 中的 kafka.group.id 会有所帮助。
如何通过 Spark Structured Streaming 确保 kafka 数据摄取不丢失数据?
但是,我尝试了 spark 3.0 中的设置,如下所示。
package com.example
/**
* @author ${user.name}
*/
import scala.math.random
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType, BooleanType, LongType}
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.SaveMode
import org.apache.spark.SparkFiles
import java.util.Properties
import org.postgresql.Driver
import org.apache.spark.sql.streaming.Trigger
import java.time.Instant
import org.apache.hadoop.fs.{FileSystem, Path}
import java.net.URI
import java.sql.Connection
import java.sql.DriverManager
import java.sql.ResultSet
import java.sql.SQLException
import java.sql.Statement
//import org.apache.spark.sql.hive.HiveContext
import scala.io.Source
import java.nio.charset.StandardCharsets
import com.amazonaws.services.kms.{AWSKMS, AWSKMSClientBuilder}
import com.amazonaws.services.kms.model.DecryptRequest
import java.nio.ByteBuffer
import com.google.common.io.BaseEncoding
object App {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder()
.appName("MY-APP")
.getOrCreate()
import spark.sqlContext.implicits._
spark.catalog.clearCache()
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1)
spark.conf.set("spark.sql.legacy.timeParserPolicy", "LEGACY")
spark.sparkContext.setLogLevel("ERROR")
spark.sparkContext.setCheckpointDir("/home/ec2-user/environment/spark/spark-local/checkpoint")
System.gc()
val df = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "mybroker.io:6667")
.option("subscribe", "mytopic")
.option("kafka.security.protocol", "SASL_SSL")
.option("kafka.ssl.truststore.location", "/home/ec2-user/environment/spark/spark-local/creds/cacerts")
.option("kafka.ssl.truststore.password", "changeit")
.option("kafka.ssl.truststore.type", "JKS")
.option("kafka.sasl.kerberos.service.name", "kafka")
.option("kafka.sasl.mechanism", "GSSAPI")
.option("kafka.group.id","MYID")
.load()
df.printSchema()
val schema = new StructType()
.add("id", StringType)
.add("x", StringType)
.add("eventtime", StringType)
val idservice = df.selectExpr("CAST(value AS STRING)")
.select(from_json(col("value"), schema).as("data"))
.select("data.*")
val monitoring_df = idservice
.selectExpr("cast(id as string) id",
"cast(x as string) x",
"cast(eventtime as string) eventtime")
val monitoring_stream = monitoring_df.writeStream
.trigger(Trigger.ProcessingTime("120 seconds"))
.foreachBatch { (batchDF: DataFrame, batchId: Long) =>
if(!batchDF.isEmpty)
{
batchDF.persist()
printf("At %d, the %dth microbatch has %d records and %d partitions \n", Instant.now.getEpochSecond, batchId, batchDF.count(), batchDF.rdd.partitions.size)
batchDF.show()
batchDF.write.mode(SaveMode.Overwrite).option("path", "/home/ec2-user/environment/spark/spark-local/tmp").saveAsTable("mytable")
spark.catalog.refreshTable("mytable")
batchDF.unpersist()
spark.catalog.clearCache()
}
}
.start()
.awaitTermination()
}
}
使用以下 spark-submit 命令在独立模式下测试 spark 作业,但是当我在 AWS EMR 中以集群模式部署时存在同样的问题。
spark-submit --master local[1] --files /home/ec2-user/environment/spark/spark-local/creds/client_jaas.conf,/home/ec2-user/environment/spark/spark-localreds/cacerts,/home/ec2-user/environment/spark/spark-local/creds/krb5.conf,/home/ec2-user/environment/spark/spark-local/creds/my.keytab --driver-java-options "-Djava.security.auth.login.config=/home/ec2-user/environment/spark/spark-local/creds/client_jaas.conf -Djava.security.krb5.conf=/home/ec2-user/environment/spark/spark-local/creds/krb5.conf" --conf spark.dynamicAllocation.enabled=false --conf "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=/home/ec2-user/environment/spark/spark-local/creds/client_jaas.conf -Djava.security.krb5.conf=/home/ec2-user/environment/spark/spark-local/creds/krb5.conf" --conf "spark.driver.extraJavaOptions=-Djava.security.auth.login.config=/home/ec2-user/environment/spark/spark-local/creds/client_jaas.conf -Djava.security.krb5.conf=/home/ec2-user/environment/spark/spark-local/creds/krb5.conf" --conf spark.yarn.maxAppAttempts=1000 --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.0 --class com.example.App ./target/sparktest-1.0-SNAPSHOT-jar-with-dependencies.jar
然后,我开始流式作业以从 Kafka 主题中读取流式数据。一段时间后,我杀死了火花工作。然后,我等待 1 小时重新开始工作。如果我理解正确,新的流数据应该从我终止 spark 作业时的偏移量开始。但是,它仍然以最新的偏移量开始,这在我停止作业期间导致数据丢失。
我是否需要配置更多选项以避免数据丢失?还是我对 Spark 3.0 有什么误解?谢谢!
问题解决了
这里的关键问题是检查点必须专门添加到查询中。仅仅为 SparkContext 添加检查点是不够的。添加检查点后,它正在工作。在checkpoint文件夹中,会创建一个offset子文件夹,里面包含offset文件,0,1,2,3....对于每个文件,都会显示不同分区的offset信息。
{"8":109904920,"2":109905750,"5":109905789,"4":109905621,"7":109905330,"1":109905746,"9":109905750,"3":109905936,"6":109905531,"0":109905583}}
一种建议是将检查点放在一些外部存储上,例如 s3。即使您需要重建 EMR 集群本身以防万一,它也可以帮助恢复偏移量。