我实现了一个顺序二次规划 (SQP) 优化器,并将 ojAlgo 用于二次规划 (QP) 子问题。
我的问题是:我如何获得 QP 解决方案的“拉格朗日乘数”?
在解决 QP result.getMultipliers() 的附加示例代码中,仅返回一个空的 Optional。
package com.mycompany.testojalgo;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;
import java.util.Optional;
import org.ojalgo.matrix.Primitive64Matrix;
import org.ojalgo.optimisation.Expression;
import org.ojalgo.optimisation.ExpressionsBasedModel;
import org.ojalgo.optimisation.Optimisation;
import org.ojalgo.optimisation.Variable;
import org.ojalgo.structure.Access1D;
import org.ojalgo.type.StandardType;
import org.ojalgo.type.context.NumberContext;
public class ojAlgoQP {
public static void main(String[] args) {
testOjAlgoQuadraticProgramming();
}
public static void testOjAlgoQuadraticProgramming() {
// QP Example 16.2 p453 in 'Numerical Optimization', 2ed, (2006), Jorge Nocedal and Stephen J. Wright.
// minimize function F(x1,x2,x3) = 3*x1*x1 + 2*x1*x2 + x1*x3 + 2.5*x2*x2 + 2*x2*x3 + 2*x3*x3 - 8*x1 - 3*x2 - 3*x3
// x = [x1, x2, x3]'
// F(x) = 1/2*x'*H*x + x'*g
// constraints x1 + x3 = 3, x2 + x3 = 0
// A*x = b
//objectiveGradient
Primitive64Matrix g = Primitive64Matrix.FACTORY.rows(new double[][]{
{-8}, {-3}, {-3}
});
//objectiveHessian
Primitive64Matrix H = Primitive64Matrix.FACTORY.rows(new double[][]{
{6, 2, 1},
{2, 5, 2},
{1, 2, 4}
});
Variable x1 = new Variable("x1");
Variable x2 = new Variable("x2");
Variable x3 = new Variable("x3");
// constraint equations
Primitive64Matrix A = Primitive64Matrix.FACTORY.rows(new double[][]{
{1, 0, 1},
{0, 1, 1}
});
// required constraint values
Primitive64Matrix b = Primitive64Matrix.FACTORY.rows(new double[][]{
{3}, {0}
});
List<Variable> variables = new ArrayList<>();
variables.add(x1);
variables.add(x2);
variables.add(x3);
ExpressionsBasedModel model = new ExpressionsBasedModel(variables);
Expression energy = model.addExpression("Energy");
energy.setLinearFactors(variables, g);
//divide by two to express function using hessian.
energy.setQuadraticFactors(variables, H.divide(2));
energy.weight(BigDecimal.ONE);
//create constraint equations
for (int i = 0; i < A.countRows(); i++) {
Expression expression = model.addExpression("Constraint#"+i);
for (int j = 0; j < A.countColumns(); j++) {
expression.set(variables.get(j), A.get(i, j));
}
expression.level(b.get(i));
}
Optimisation.Result result = model.minimise();
NumberContext accuracy = StandardType.PERCENT.withPrecision(1);
boolean ok = model.validate(result, accuracy);
Optimisation.State v = result.getState();
// How do I get the multipliers
Optional<Access1D<?>> multipliers = result.getMultipliers();
double value1 = result.getValue();
// Get result and check value and constraint
Primitive64Matrix x = Primitive64Matrix.FACTORY.rows(new double[][]{
{x1.getValue().doubleValue()}, {x2.getValue().doubleValue()}, {x3.getValue().doubleValue()}
});
//divide by two to express function using hessian, again.
Primitive64Matrix value = x.transpose().multiply(H.divide(2)).multiply(x).add(x.transpose().multiply(g));
Primitive64Matrix residual= A.multiply(x).subtract(b);
}
}
更新 1: 这是我使用 org.ojalgo.optimisation.convex.ConvexSolver.getBuilder(); 修改的示例
package com.mycompany.testojalgo;
import java.util.Optional;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.matrix.store.Primitive64Store;
import org.ojalgo.optimisation.Optimisation;
import org.ojalgo.optimisation.convex.ConvexSolver;
import org.ojalgo.structure.Access1D;
public class ojAlgoQP {
public static void main(String[] args) {
testOjAlgoQuadraticProgramming2();
}
public static void testOjAlgoQuadraticProgramming2() {
// QP Example 16.2 p453 in 'Numerical Optimization', 2ed, (2006), Jorge Nocedal and Stephen J. Wright.
// minimize function F(x1,x2,x3) = 3*x1*x1 + 2*x1*x2 + x1*x3 + 2.5*x2*x2 + 2*x2*x3 + 2*x3*x3 - 8*x1 - 3*x2 - 3*x3
// x = [x1, x2, x3]'
// F(x) = 1/2*x'*H*x + x'*g
// constraints x1 + x3 = 3, x2 + x3 = 0
// A*x = b
//objectiveGradient
Primitive64Store gStore = Primitive64Store.FACTORY.rows(new double[][]{
{-8}, {-3}, {-3}
});
//objectiveHessian
Primitive64Store HStore = Primitive64Store.FACTORY.rows(new double[][]{
{6, 2, 1},
{2, 5, 2},
{1, 2, 4}
});
// constraint equations
Primitive64Store AStore = Primitive64Store.FACTORY.rows(new double[][]{
{1, 0, 1},
{0, 1, 1}
});
// required constraint values
Primitive64Store bStore = Primitive64Store.FACTORY.rows(new double[][]{
{3}, {0}
});
ConvexSolver.Builder builder = ConvexSolver.getBuilder();
builder.equalities(AStore, bStore);
builder.objective(HStore, gStore.negate());
ConvexSolver solver = builder.build();
Optimisation.Result result = solver.solve();
// How do I get the multipliers? multipliers = Optional.empty
Optional<Access1D<?>> multipliers = result.getMultipliers();
// value1 = -3.5
double value1 = result.getValue();
// Verify result:
// x= [2.0, -0.9999999999999996, 0.9999999999999997]';
// value = -3.5
// residual =[-4.440892098500626E-16, 1.1102230246251565E-16]'
Primitive64Store x = Primitive64Store.FACTORY.column(result.toRawCopy1D());
MatrixStore<Double> value = x.transpose().multiply(HStore.multiply(0.5)).multiply(x).add(x.transpose().multiply(gStore));
MatrixStore<Double> residual = AStore.multiply(x).subtract(bStore);
}
}