在 Node1 (4CPU, 8GB) 上启动 Dask 调度程序:
Dask调度程序:dask-scheduler --host 0.0.0.0 --port 8786
在 Node2(8CPU,32GB)和 Node3(8CPU,32GB)上启动 Worker: Dask Worker:
dask-worker tcp://http://xxx.xxx.xxx.xxx:8786 --nanny-port 3000:3004 --worker-port 3100:3104 --dashboard-address :8789
这是我的原型,编辑some_private_processing
和some_processing
方法:
import glob
import pandas as pd
from dask.distributed import Client
N_CORES = 16
THREADS_PER_WORKER = 2
dask_cluster = Client(
'127.0.0.1:8786'
)
def get_clean_str1(str1):
ret_tuple = None, False, True, None, False
if not str1:
return ret_tuple
if string_validators(str1) is not True:
return ret_tuple
data = some_processing(str1)
match_flag = False
if str1 == data.get('formated_str1'):
match_flag = True
private_data = some_private_processing(str1)
private_match_flag = False
if str1 == private_data.get('formated_private_str1'):
private_match_flag = True
ret_tuple = str1, match_flag, False, private_str1, private_match_flag
return ret_tuple
files = [
'part-00000-abcd.gz.parquet',
'part-00001-abcd.gz.parquet',
'part-00002-abcd.gz.parquet',
]
print('Starting...')
for idx, each_file in enumerate(files):
dask_cluster.restart()
print(f'Processing file {idx}: {each_file}')
all_str1s_df = pd.read_parquet(
each_file,
engine='pyarrow'
)
print(f'Read file {idx}: {each_file}')
all_str1s_df = dd.from_pandas(all_str1s_df, npartitions=16000)
print(f'Starting file processing {idx}: {each_file}')
str1_res_tuple = all_str1s_df.map_partitions(
lambda part: part.apply(
lambda x: get_clean_str1(x['str1']),
axis=1
),
meta=tuple
)
(clean_str1,
match_flag,
bad_str1_flag,
private_str1,
private_match_flag) = zip(*str1_res_tuple)
all_str1s_df = all_str1s_df.assign(
clean_str1=pd.Series(clean_str1)
)
all_str1s_df = all_str1s_df.assign(
match_flag=pd.Series(match_flag)
)
all_str1s_df = all_str1s_df.assign(
bad_str1_flag=pd.Series(bad_str1_flag)
)
all_str1s_df = all_str1s_df.assign(
private_str1=pd.Series(private_str1)
)
all_str1s_df = all_str1s_df.assign(
private_match_flag=pd.Series(private_match_flag)
)
all_str1s_df = all_str1s_df[
all_str1s_df['match_flag'] == False
]
all_str1s_df = all_str1s_df.repartition(npartitions=200)
all_str1s_df.to_csv(
f'results-str1s-{idx}-*.csv'
)
print(f'Finished file {idx}: {each_file}')
此处理需要 8 多个小时,我看到所有数据仅在 Node2 或 Node3 上的一个节点上处理,而不是在 Node2 和 Node3 上处理。
需要帮助来理解洞察力并了解我做错了什么以使这个简单的数据转换运行超过 8 小时但仍未完成。