1

我已经能够使用以下相关矩阵生成:

attach(iris)
library(corrplot)
library(Hmisc)
library(Formula)
library(survival)

#FOR SETOSA:
m<-levels(Species)
setosaCor=cor(iris[Species==m[1],1:4],method = "pearson")
corrplot(setosaCor,method="number",mar=c(0,0,1,0),tl.col="black")

但是,努力获取该矩阵的 p 值。我需要矩阵形式的 p 值。这是我尝试过但没有任何运气的方法

 p.value<-rcorr(as.matrix(iris[c(1,2,3,4)]), type=c("pearson"))
 cor_mat(iris, vars = NULL, method = "pearson", alternative = "two.sided",conf.level = 0.95) 
4

1 回答 1

0

像这样?

library("Hmisc")
res2 <- rcorr(as.matrix(mtcars))
res2$P

输出:

              mpg          cyl         disp           hp         drat           wt         qsec           vs
mpg            NA 6.112688e-10 9.380328e-10 1.787835e-07 1.776240e-05 1.293958e-10 1.708199e-02 3.415937e-05
cyl  6.112688e-10           NA 1.803002e-12 3.477861e-09 8.244636e-06 1.217567e-07 3.660533e-04 1.843018e-08
disp 9.380328e-10 1.803002e-12           NA 7.142679e-08 5.282022e-06 1.222311e-11 1.314404e-02 5.235012e-06
hp   1.787835e-07 3.477861e-09 7.142679e-08           NA 9.988772e-03 4.145827e-05 5.766253e-06 2.940896e-06
drat 1.776240e-05 8.244636e-06 5.282022e-06 9.988772e-03           NA 4.784260e-06 6.195826e-01 1.167553e-02
wt   1.293958e-10 1.217567e-07 1.222311e-11 4.145827e-05 4.784260e-06           NA 3.388683e-01 9.798492e-04
qsec 1.708199e-02 3.660533e-04 1.314404e-02 5.766253e-06 6.195826e-01 3.388683e-01           NA 1.029669e-06
vs   3.415937e-05 1.843018e-08 5.235012e-06 2.940896e-06 1.167553e-02 9.798492e-04 1.029669e-06           NA
am   2.850207e-04 2.151207e-03 3.662114e-04 1.798309e-01 4.726790e-06 1.125440e-05 2.056621e-01 3.570439e-01
gear 5.400948e-03 4.173297e-03 9.635921e-04 4.930119e-01 8.360110e-06 4.586601e-04 2.425344e-01 2.579439e-01
carb 1.084446e-03 1.942340e-03 2.526789e-02 7.827810e-07 6.211834e-01 1.463861e-02 4.536949e-05 6.670496e-04
               am         gear         carb
mpg  2.850207e-04 5.400948e-03 1.084446e-03
cyl  2.151207e-03 4.173297e-03 1.942340e-03
disp 3.662114e-04 9.635921e-04 2.526789e-02
hp   1.798309e-01 4.930119e-01 7.827810e-07
drat 4.726790e-06 8.360110e-06 6.211834e-01
wt   1.125440e-05 4.586601e-04 1.463861e-02
qsec 2.056621e-01 2.425344e-01 4.536949e-05
vs   3.570439e-01 2.579439e-01 6.670496e-04
am             NA 5.834043e-08 7.544526e-01
gear 5.834043e-08           NA 1.290291e-01
carb 7.544526e-01 1.290291e-01           NA

输出也具有矩阵格式,您可以使用 [] 符号进行子集化

于 2020-09-14T00:11:30.523 回答