您似乎希望我们为您完成初始探索性数据分析的所有步骤。在您的下一个帖子中,您应该首先展示您对可重现代码的问题,展示您尝试的结果,并就您的疑问提出具体问题,而不是要求这样的编码。也就是说,让我们看看你的问题:
您可以在循环中使用 apply 来返回每列的中值、平均值、Q1 和 Q3。
sapply(yourdataframe, median) #will return a vector with the medians of every column
相似地,
sapply(yourdataframe, quantile, 0.25) #will return a vector with all the first quartiles
sapply(yourdataframe, quantile, 0.75) #will return a vector with all the third quartiles
您可能想要编写一个函数,将所有这些集成在一个调用中,如下所示:
descriptive<-function(x=data.frame(), digits=2, na.rm=TRUE, normality_test="shapiro"){
library(stats)
is.normal<-character()
medians<-numeric()
Q1<-numeric()
Q3<-numeric()
means<-numeric()
SDs<-numeric()
output<-character()
for (i in seq_along(x)){
if (is.numeric(x[,i])){
medians[i]<-median(x[,i], na.rm = na.rm)
Q1[i]<-quantile(x[,i], 0.25, na.rm = na.rm)
Q3[i]<-quantile(x[,i], 0.75, na.rm = na.rm)
means[i]<-round(mean(x[,i], na.rm = na.rm), digits = digits)
SDs[i]<-round(sd(x[,i], na.rm=TRUE), digits = digits)
if (normality_test=="shapiro"){
p.value<-shapiro.test(x[,i])$p.value
} else if (normality_test=="ks"){
p.value<-ks.test(x[,i], "pnorm", means[i], SDs[i])$p.value
}
if (p.value<=0.05){
is.normal[i]<-FALSE
output[i]<-paste0(medians[i], " (", Q1[i], "-", Q3[i], ")")
}else{
is.normal[i]<-TRUE
output[i]<-paste0(means[i], " +-", SDs[i])
}
}else {
is.normal[i]<-NA
means[i]<-NA
medians[i]<-NA
Q1[i]<-NA
Q3[i]<-NA
SDs[i]<-NA
output[i]<-NA
}
}
df<-data.frame(rbind( "normal distr"=is.normal, "median"=medians, "Q1"=Q1, "Q3"=Q3, "mean"=means, "SD"=SDs, "output"=output))
names(df)<-colnames(x)
df
}
举个例子:
> descriptive(iris, normality_test="shapiro")
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
normal distr FALSE TRUE FALSE FALSE <NA>
median 5.8 3 4.35 1.3 <NA>
Q1 5.1 2.8 1.6 0.3 <NA>
Q3 6.4 3.3 5.1 1.8 <NA>
mean 5.84 3.06 3.76 1.2 <NA>
SD 0.83 0.44 1.77 0.76 <NA>
output 5.8 (5.1-6.4) 3.06 +-0.44 4.35 (1.6-5.1) 1.3 (0.3-1.8) <NA>
有几种方法可以根据分类值对数据进行子集分析,检查 dplyr 的 filter 和 group_by 函数。